

ARDINO

Agenda

- Introduction:
 - What is Microcontroller?
 - What is Arduino?
 - Types of Arduino
 - Arduino Uno Board
 - Arduino Shields
 - What is Arduino used for?
 - What can Arduino do?
 - 8. Why Arduino?
 - Input/output
 - 10. Analog/digital
 - 11. Sensor
 - 12. Communication
- Programming structure:
 - Data types
 - Statement and operators.
 - Control statements [if, if...else, switch case]
 - Loop statement [while, for, do ...while]

 - 5. What is function?
 - What is Arduino Libraries
- Basic Process
- Arduino IDE
- Arduino Language Reference
- Technical Section [Handling Event Using the in-build millis() function]
- Questions???

INTRODUCTION

What is Microcontroller?

☐ A small computer on a single chip containing a Central Processor Unit (CPU), flash memory, RAM and input/output interface.

Microcontroller Used for control purposes, and for data analysis

Atmel Intel

Microchip

What is Arduino?

- ➤ An open-source electronics platform based on easy-to-use hardware (electronic board) and software (IDE). www.arduino.cc
- ➤ A electronic board, with on-board regulated power supply, USB port to communicate with PC, and an Atmel microcontroller chip.
- Anyone can get the details of its design and modify it or make his own.

Types of Arduino

Arduino Uno: 16MHz

Arduino Nano: 16MHz

LilyPad Arduino: 8MHz

Arduino Mega2560: 16MHz

Arduino Ethernet: 16MHz

Arduino Pro Mini : 8 (3.3 V)/16 (5 V) MHz

Types of Arduino

Arduino 101: 32MHz

Arduino Zero: 48MHz

Arduino Due: 84MHz Arduino Yún: 16MHz and 400MHz

Arduino Leonardo: 16MHz

Types of Arduino

Arduino Fio: 8MHz

Arduino Pro: 16MHz

Arduino Mega ADK: 16MHz

Arduino Esplora: 16MHz

Arduino Micro: 16MHz

Arduino Uno Board

Arduino Shields

Boards plugged on top of the Arduino PCB to extend its capacities.

What is Arduino used for?

- Physical Computing projects / research
- ➤ Interactive Design
- Rapid prototyping

What can Arduino do?

- ☐ Sensors (sense things)
 - Push buttons, touch pads, tilt switches.
 - Variable resistors (volume knob / sliders)
 - Photo-resistors (light intensity)
 - Thermistors (temperature)
 - Ultrasound (proximity range finder)
- ☐ Actuators (do things)
 - Lights, LED's
 - Motors
 - Speakers
 - Displays (LCD)

Why Arduino?

- ➤ It is Open Source, both in terms of Hardware and Software.
- It can communicate with a computer via serial connection over USB.
- ➤ It can be powered from USB or standalone DC power.
- It can run standalone from a computer (chip is programmable) and it has memory (a small amount).
- ➤ It can work with both Digital and Analog electronic signals. Sensors and Actuators.
- You can build robots, drone, home automation, IoT application, farm management system with Arduino.

Input/output

Input is a signal / information going into the board.

<u>Examples</u>: Buttons Switches, Light Sensors, Flex Sensors, Humidity Sensors, Temperature Sensors, Photo-transistor, etc. **Output** is any signal exiting the board.

<u>Examples</u>: LEDs, DC motor, Servo motor, Relay, Stepper motor, Piezo, Buzzer, RGB LED, etc.

Analog/digital

Digital signal are anything that can take specific levels of values with specific offset between each other.

Ex: Square waves

Analog signal are anything that take value between its minimum value and maximum value.

Ex: Temperature, Sine waves, etc.

Devices that transforms the physical quantity in electrical value.

The physical quantity could be

- **▶**Light
- >Heat
- **≻**Motion
- ► Moisture
- >Pressure
- >Temperature
- ► Blood pressure
- >Humidity
- ▶Speed
- And others environmental phenomena

Communication

Universal Asynchronous Receiver/Transmitter (UART): is a form of serial communication because data is transmitted as sequential bits

Serial Peripheral Interface (SPI): is a master-slave model, where there is one master device and multiple slave devices.

Inter-integrated circuit (I²C): it connect multiple masters to multiple slaves.

ARDUINO PROGRAMMING STRUCTURE

Data Types

Туре	Byte length	Range of values
boolean	1	Limited to logic true and false
char	1	Range: -128 to +127
unsigned char	1	Range: 0 to 255
byte	1	Range: 0 to 255
int	2	Range: -32,768 to 32,767
unsigned int	2	Range: 0 to 65,535
word	2	Range: 0 to 65,535
long	4	Range: -2,147,483,648 to 2,147,483,647
unsigned long	4	Range: 0 to 4,294,967,295
float	4	Range: -3.4028235E+38 to 3.4028235E+38
double	4	Range: -3.4028235E+38 to 3.4028235E+38
string	?	A null ('\0') terminated reference type data build from a character array
String	?	An reference data type object
array	7	A sequence of a value type that is referenced by a single variable name

Example:

Int i = 140; char c = 'A'; long u = 234455; float f = 1.56; unsigned int num = 454;

Statement and Operators

Statement represents a command, it ends with ';'

Example: int i;

i=49;

Operators are symbols that used to indicate a specific function:

- Math operators: [+,-,*,/,%,^]
- Logic operators: [==, !=, &&, ||]
- Comparison operators: [==, >, <, !=, <=, >=]

Syntax:

- ';' Semicolon (end statement)
- '{}' curly braces (block of statement)
- '//' single line comment,
- /*Multi-line comments*/

Statement and Operators

Compound Operators:

- ++ (increment)
- -- (decrement)
- += (compound addition)
- -= (compound subtraction)
- *= (compound multiplication)
- /= (compound division)

Control Statements

If statement:

```
if(condition)
       statements;
else if(condition2)
       Statements;
Else!
       statements;
```

Control Statements

```
Switch statement:
switch (x) {
   case 1:
   //do something when x equals 1
    break:
   case 2:
   //do something when x equals 2
    break:
   default:
   // if nothing else matches, do the default
   // default is optional
```

Loop Statement

```
Do... while:
do
{
    Statements;
} while(condition); // the statements are run at least once.
```

```
While:
While(condition)
{
         statements;
}

for
for (int i=0; i <= var; i++) {
         statements;
}</pre>
```

A body of code designed to solve a particular task.

```
void setup() {
  // put your setup code here, to run once:
}

void loop() {
  // put your main code here, to run repeatedly:
}
```

What is Arduino Library?

- Arduino environment can be extended through the use of libraries.
- Libraries provide extra functionality for use in sketches.
 - Working with hardware
 - ☐ Manipulating data.
- A number of libraries come installed with the IDE.
 - ☐ Download
 - Create your own.

Basic Process

- Design the circuit:
 - What are electrical requirements of the sensors or actuators?
 - o Identify inputs (analog inputs)
 - Identify digital outputs
- > Write the code
 - Build incrementally
 - · Get the simplest piece to work first
 - Add complexity and test at each stage
 - Save and Backup frequently
 - Use variables, not constants
 - o Comment explicitly

Arduino IDE

Download the Arduino IDE (The program used to write code and uploading it to arduino boards) from: http://arduino.cc/en/Main/Software

Arduino Language Reference

Reference Language | Libraries | Comparison | Changes

Language Reference

Arduino programs can be divided in three main parts: structure, values (variables and constants), and functions.

http://arduino.cc/en/Reference/HomePage

Technical Session

Handling Multiple Event Using the Arduino in-build millis() function:

Make a 4 LEDs to blink at different rate of 1 sec, 0.5 sec, 0.25 sec and 0.1 sec in an infinite loop.

Download the demo code from

https://github.com/emotexplanet/Arduino_Multiple_Event_with_millis_function

Questions???

Inank

Introduction to Arduino

Arduino Programming

(C) 2014 James Lewis james@baldengineer.com

Arduino Pin Description

BY: NIKET CHANDRAWANSHI

HTTP://WWW.NIKETCHANDRAWANSHI.ME/

Introduction to Arduino/Genuino Uno

FABTECH TECHNICAL CAMPUS COLLAGE OF ENGINEERING, SANGOLA

PRESENTATION ON

SUMMER TRAINING ON ARDUINO

PRESENTED BY: PHADTARE RAVI DATTATRYA ROLL NO.- 21

Line follower competition. Introduction to...

Arduino

