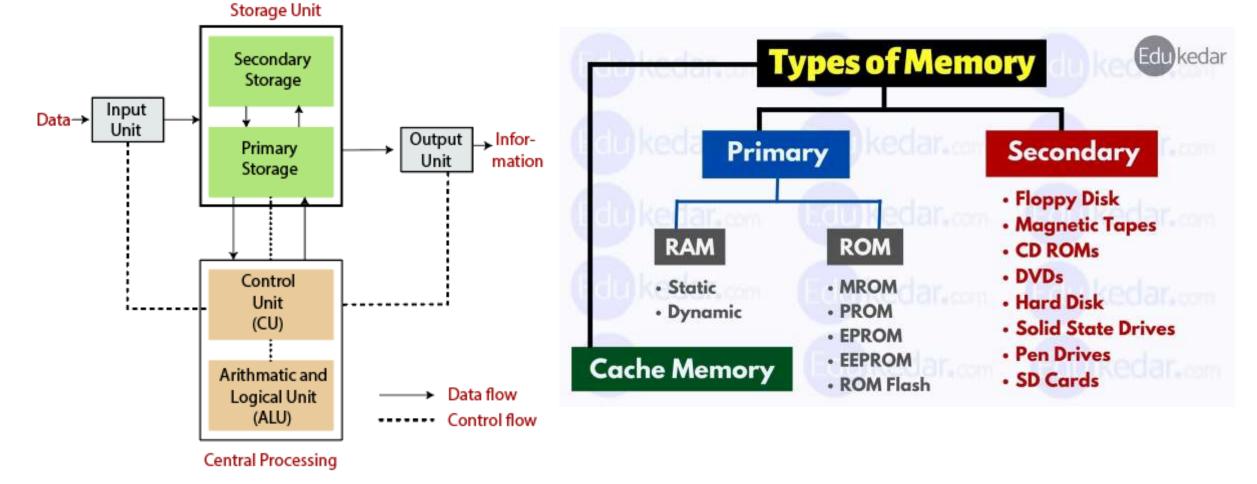
UNIT I BASIC STRUCTURE OF COMPUTERS

Functional units – Basic operational concepts – Bus Structures – Performance – Memory locations and addresses – Memory operations – Instruction and Instruction sequencing –– Addressing modes – Assembly language – Case study : RISC and CISC Architecture.

Recall the previous class concepts

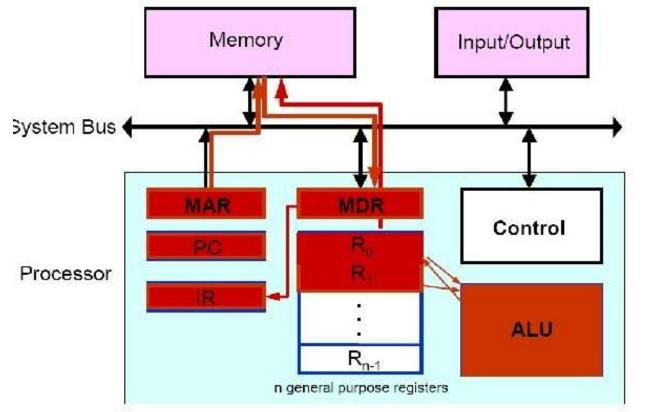

Angel Latha Mary S

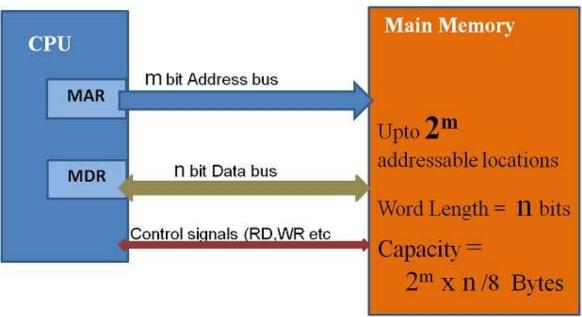
2

Block diagram of Computer

INSTITUTIONS

Functional Unit

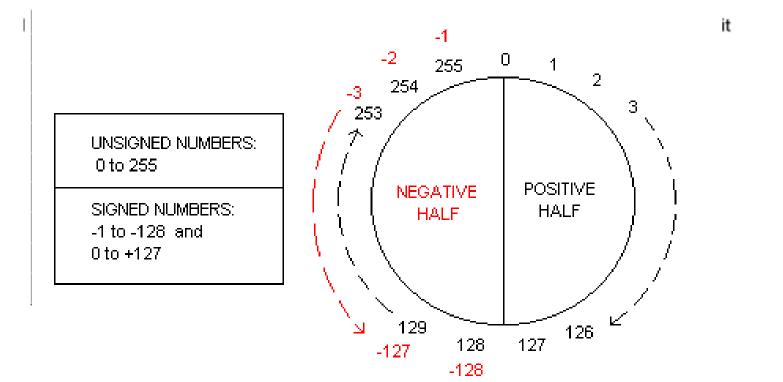

Angel Latha Mary S


3

Analysing how processor and memory are connected

- Processors have various registers to perform various functions
- **Program Counter** It contains the memory address of next instruction to be fetched.
- Instruction Register It holds the instruction which is currently being executed
- **MDR** It facilities communication with memory. It contains the data to be written into or read out of the addressed location.
- MAR It holds the address of the location that is to be accessed n general purpose registers that is R0 to Rn-1

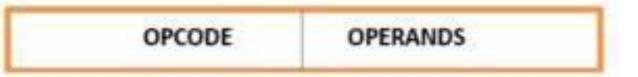
Example A Connection between Processor & Memory



5/14

Operations & Operands -

8-BIT NUMBER SYSTEM

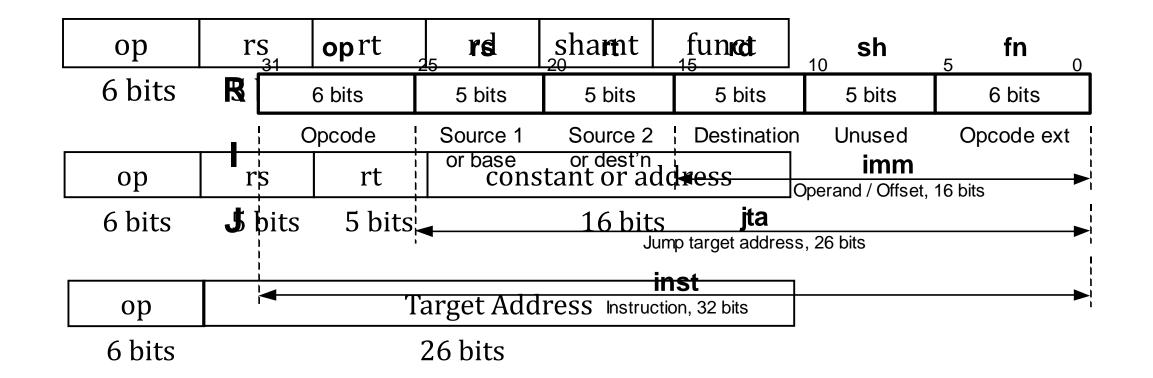

Operations of Computer Hardware

Basic Operational Concepts

• Instruction consists of 2 parts

• Example

ADD LOCA, RO


Load LOCA, R1 Add R1, R0

Angel Latha Mary S

8

Instructions Format

Translating Arm Assembly Instructions into Machine Instructions

[op 6 bits			rt 5 bits	rd 5 bits	sham 5 bits			add \$	t0, \$s1, \$s2
		[sp	ecial	\$s1	\$s2	\$t0	0	add]
				0	17	18	8	0	32]
			00	0000	10001	10010	01000	00000	100000]

 $00000100011001001000000010000_2 = 02324020_{16}$

Angel Latha Mary S

10/14

ARM Assembly Language

	Logical	and	and \$\$1,\$\$2,\$\$3	\$s1 = \$s2 & \$s3	
		or	or \$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	
		nor	nor \$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	
		and immediate	andi \$s1,\$s2,20	\$s1 = \$s2 & 20	
1		or immediate	ori \$s1,\$s2,20	\$s1 = \$s2 20	
		shift left logical	sll \$s1,\$s2,10	\$s1 = \$s2 << 10	
ĺ		shift right logical	srl \$s1,\$s2,10	\$s1 = \$s2 >> 10	
	Conditional branch	branch on equal	beq \$s1.\$s2.25	if (\$s1 == \$s2) go to PC + 4 + 100	
		branch on not equal	bne \$s1,\$s2,25	if (\$s1!= \$s2) go to PC + 4 + 100	
		set on less than	slt \$s1,\$s2,\$s3	<pre>if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0</pre>	
t		set on less than unsigned	sltu \$s1,\$s2,\$s3	<pre>if (\$s2 < \$s3) \$s1 = 1; else \$s1 = 0</pre>	
		set less than immediate	slti \$s1,\$s2,20	if (\$s2 < 20) \$s1 = 1; else \$s1 = 0	
		set less than immediate unsigned	sltiu \$s1,\$s2,20	If (\$s2 < 20) \$s1 = 1; else \$s1 = 0	0 or 1
·	Unconditional jump	jump	j 2500	go to 10000	
		jump register	jr \$ra	go to \$ra	
-		jump and link	jal 2500	\$ra = PC + 4; go to 10000	

INSTITUTIONS

Operating System

