

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHANICAL ENGINEERING

ENGINEERING THERMODYNAMICS

UNIT 4 – STEAM POWER CYCLES TOPIC – RANKINE WITH REGENERATIVE CYCLE

> ASP/ Mechanical Engg., SNS College of Technology, Coimbatore - 35

K.Prakash,

Introduction to Regenerative cycle

19/05/2022

Rankine With Regenerative Cycle / ENGINEERING THERMODYNAMICS/PRAKASH K/Mech/SNSCT

It is process in which steam is extracted at several locations of the

]	
_	

٦		
]	L	

Schematic Diagram

19/05/2022

Rankine With Regenerative Cycle /ENGINEERING THERMODYNAMICS/PRAKASH K/Mech/SNSCT

Assessment -1

- 1. The steam extracted at several locations at the turbine is called
 - a) Dry steam
 - b) Wet steam
 - c) Bled Steam
 - d) Superheated steam
- 2. Identify the place where maximum heat rejection takesplace
 - a) Boiler
 - b) Condenser
 - c) Turbine
 - d) Pump

Assessment -1(Contd..)

- For every 9°C temperature rise in the feed water, 1% 3. of will be saved.
- a) energy consumption
- b) fuel consumption
- c) Turbine work
- d) pump work
- 4. The place where bled steam and condensate is mixed is called
- Turbine al
- Condenser b)
- Feed water heater **C**]
- Pump

Processes involved

□Process 1-2, 2-3 Isentropic expansion [Turbine] □Process 3-4 Constant pressure heat rejection [Condenser] □Process 4-5 and 6-7 Isentropic compression in Pump1 and Pump2 □Process 7-1 Constant pressure heat addition [Boiler]

Working Principle

□High pressure and high temperature passes through the [*Turbine*] The steam extracted several locations (*Bled Steam*) before entering to the condenser

- **Only less amount of steam passes through the condenser**(*less amount* heat released)
- condensate and Bled steam is directly mixed in *feed water heater*
- **Thus feedwater (***to boiler***) temperature increases**

Working principle

 $\Box 1\%$ of fuel consumption is saved for every 9°C temperature rise (*feed water*) □Increases the *overall thermal efficiency* **Q**Reduces the *fuel consumption*. This indirectly helps to reduce *CO*₂ *emissions* **Q**Reduces the corrosion at turbine blades (*Increases turbine life*)

Estimation of Thermal efficiency

Turbine work : $W_T = (h_1 - h_2) + (1 - m) (h_2 - h_3) kJ/kg$ Compressor work : $W_P = (h_7 - h_6) + (1 - m) (h_5 - h_4) kJ/kg$ Heat input: $Q_{in} = (h_1 - h_7) kJ/kg$

Thermal efficiency : $\eta = (W_T - W_P)/Q_{in} \times 100$

Advantages

- Improves fuel efficiency

Source :https://www.clarke-energy.com/

• Reduces CO₂ emission.

Source : https://science.howstuffworks.com

Rankine With Regenerative Cycle /ENGINEERING THERMODYNAMICS/PRAKASH K/Mech/SNSCT

• Reduces primary energy cost (fuel cost)

Advantages

• Improves overall thermal efficiency (less heat loss at Condenser)

Source : https://www.ecourses.ou.edu

Source : https://tinyurl.com/y7ef2sl9

• Less corrosion at Turbine

19/05//2022

Rankine With Regenerative Cycle /ENGINEERING THERMODYNAMICS/PRAKASH K/Mech/SNSCT

Disadvantages

Source :electrical4u.com

Source[']: https://blog.miragemachines.com

• High maintenance

Rankine With Regenerative Cycle /ENGINEERING THERMODYNAMICS/PRAKASH K/Mech/SNSCT

• High initial cost for setting up Feedwater heaters

Assessment -2 (Problem)

In a single heater regenerative cycle, the steam enters the turbine at 30bar,400°C and the exhaust pressure is 0.1 bar. The feed water heater is a direct contact type which operates at 5 bar. Estimate

 the efficiency of Rankine with Regenerative cycle.
 Steam rate and Heat rate

References

- Nag. P.K., "Engineering Thermodynamics", 4thEdition, Tata McGraw-Hill, New • Delhi, 2013
- Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 8th Edition, Tata McGraw Hill, 2014
- Moran, Shapiro, Boettner & Bailey "Principles of Engineering" • Thermodynamics:", Wiley & Sons, 2015
- <u>https://ocw.mit.edu/courses/physics/8-21-the-physics-of-energy-fall-</u> ullet2009/lecture-notes/MIT8 21s09 lec12.pdf
- <u>https://nptel.ac.in/courses/101/104/101104063/</u>

Thank You