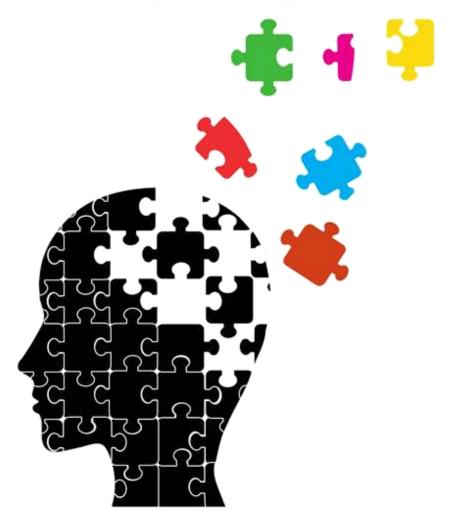
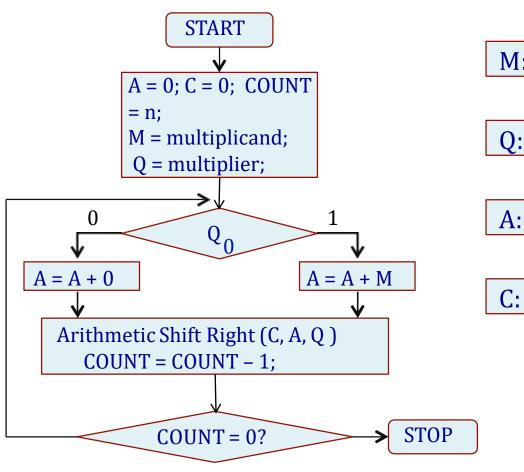


Addition and subtraction of signed numbers – Design of fast adders – Multiplication of positive numbers - **Signed operand multiplication**- fast multiplication – Integer division – Floating point numbers and operations

Recap the previous Class



Unsigned Sequential Multiplication



M: n-bit multiplicand

Q: n-bit multiplier

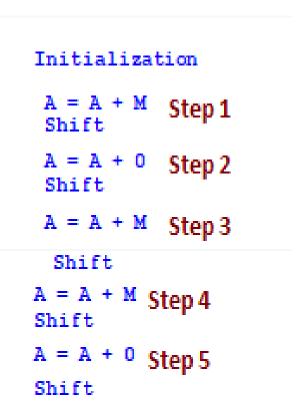
A: n-bit temporary register

C: 1-bit carry out from adder

Unsigned Sequential Multiplication

Example 1: (10) x (13)
Assume 5-bit numbers.
M: (0 1 0 1 0) ₂ Q: (0 1 1 0 1) ₂
Product = 130
=(0 0 1 0 0 0 0 0 1 0) ₂

C	A	Q
0	00000	01101
0	01010	01101
0	00101	00110
0	00101	00110
0	00010	10011
0	01100	10011
0	00110	0 1 0 0 1
0	10000	01001
0	01000	00100
0	01000	00100
0	00100	00010



Unsigned Sequential Multiplication

	С	Α	Q		
Example 2 : (29) x (21) Assume 5-bit numbers.	0	0 0 0 0 0	1 0 1 0 1	Initializati	on.
M: (1 1 1 0 1) ₂ Q: (1 0 1 0 1) ₂	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A = A + M Shift	Step 1
Product = 609	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A = A + 0 Shift	Step 2
$= (1\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 1)_2$	1	0 0 1 0 0	0 1 1 0 1	A = A + M	Step 3
		0 10010	0 0 1 1 0	Shift	
	0	1 0 0 1 0 0 1 0 0 1	0 0 1 1 0 0 0 0 1 1	A = A + 0 Shift	Step 4
	1 0	$\begin{smallmatrix} 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{smallmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A = A + M Shift	Step 5

Signed Multiplication

- •Can extend the basic shift-and-add multiplication method to handle signed numbers.
- One important difference:
 - -Required to sign-extend all the partial products before they are added.
 - -Recall that for 2's complement representation, sign extension can be done by replicating the sign bit any number of times.

```
0101 = 0000 0101 = 0000 0000 0000 0101 = 0000 0000 0000 0000 0000 0000 0101
```

1011 = 1111 1011 = 1111 1111 1111 1011 = 1111 1111 1111 1111 1111 1111 1111 1011

6-bit 2's complement multiplication

Note: For n-bit multiplication, since we are generating a 2n-bit product, overflow can never occur.

Example

 $-13 \times 11 = 5$ Bit Representation

Solution: 1101110001 (-143)

```
1 1 0 1 0 1
                   (-11)
                   (+26)
      X 0 1 1 0 1 0
000000000000
111111101 0 1
0000000000
111110101
11110101
000000
1110111000110^{(-286)}
```


Booth's Algorithm for Signed Multiplication

- In the conventional shift-and-add multiplication as discussed, for n-bit multiplication, we iterate n times.
 - Add either 0 or the multiplicand to the 2n-bit partial product (depending on the next bit of the multiplier).
 - -Shift the 2n-bit partial product to the right.
- Essentially we need <u>n additions and n shift operations.</u>
- Booth's algorithm is an improvement whereby we can avoid the additions whenever consecutive 0's or 1's are detected in the multiplier.
 - Makes the process faster.

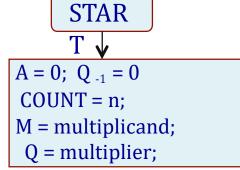
Basic Idea Behind Booth's Algorithm

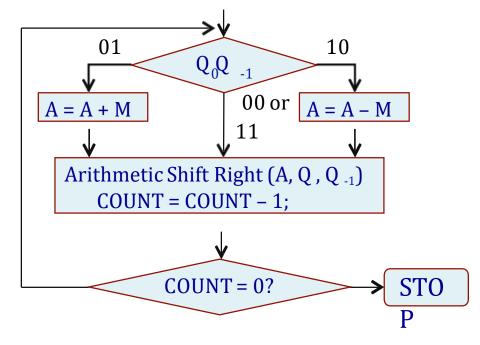
- We inspect two bits of the multiplier (Q_i, Q_{i-1}) at a time.
 - If the bits are same (00 or 11), we only shift the partial product.
 - If the bits are 01, we do an addition and then shift.
 - If the bits are 10, we do a subtraction and then shift.
- Significantly reduces the number of additions / subtractions.
- Inspecting bit pairs as mentioned can also be expressed in terms of *Booth's Encoding*.
 - Use the symbols +1, -1 and 0 to indicate changes w.r.t. Q_i and Q_{i-1} .
 - $-01 \rightarrow +1$, $10 \rightarrow -1$, $00 \text{ or } 11 \rightarrow 0$.
 - For encoding the least significant bit Q_0 , we assume $Q_{-1} = 0$.

Examples of Booth encoding

```
a) 0 1 1 1 0 0 0 0 :: +1 0 0 -1 0 0 0 0
b) 0 1 1 1 0 1 1 0 :: +1 0 0 -1 +1 0 -1 0
c) 0 0 0 0 1 1 1 :: 0 0 0 0 +1 0 0 -1
d) 0 1 0 1 0 1 0 1 :: +1 -1 +1 -1 +1 -1
```

- The last example illustrates the worst case for Booth's multiplication (alternating 0's and 1's in multiplier).
- In the illustrations, we shall show the two multiplier bits explicitly instead of showing the encoded digits.





M: n-bit multiplicand

Q: n-bit multiplier

A: n-bit temporary register

Q₋₁: 1-bit flip-flop

Skips over consecutive 0's and 1's of the multiplier Q.

Example 1: (-10) x (13	≥ 1: (-10) x (13	(-10) x :	e 1:	Example
------------------------	------------------	-----------	------	---------

Assume 5-bit numbers.

M:(10110)2

-M:(01010)₂

Q: $(01101)_2$

Product = -130

 $=(1101111110)_2$

Α	Q	Q_{-1}		
00000	01101	0	Initialization	
01 0 1 0 00 1 0 1	01101	1	A = A - M Shift	Step 1
11 0 1 1 11 1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	A = A + M Shift	Step 2
00111	10011	0	A = A - M Shift	Step 3
00001	11110	1	Shift	Step 4
10111	11100	1 0	A = A + M Shift	Step 5

Example 2:

(-31) x (28)

Assume 6-bit numbers.

M: (100001)₂

-M: (0 1 1 1 1 1)₂

Q: (0 1 1 1 0 0)₂

Product = -868

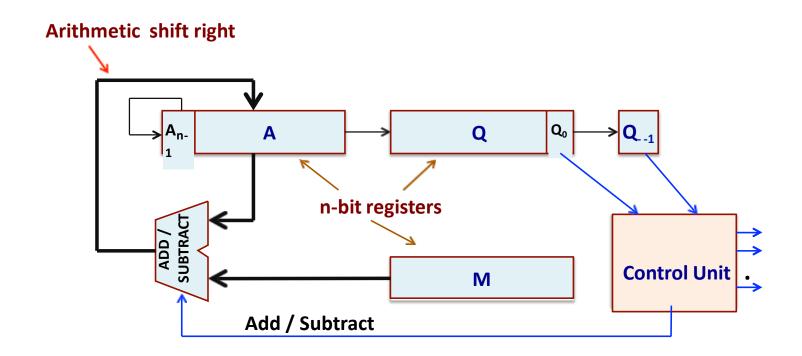
 $=(110010011100)_2$

Α		Q	Q -1
0000	0 0	0 1 1 1	0 0 0
0000	0 0	0 0 1 1	1 0 0
0000	0 0	0 0 0 1	1 1 0
0111	1 1	0001	1 1 0
0011	1 1	1000	1 1
0001	1 1	1100	0 1
0 0 0 0	1 1	1110	0 0 1
100100	1110	0 0 0	1
110010	0111	L O O	0

```
Initialization
             Step 1
Shift
             Step 2
Shift
A = A - M
             Step 3
Shift
             Step 4
Shift
             Step 5
Shift
A = A + M Step 6
```

Shift

Data Path for Booth's Algorithm



TEXT BOOK

Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6th Edition 2012.

REFERENCES

- 1. David A. Patterson and John L. Hennessey, "Computer organization and design", MorganKauffman, Elsevier, 5th edition, 2014.
- 2. William Stallings, "Computer Organization and Architecture designing for Performance", Pearson Education 8th Edition, 2010
- 3. John P.Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2002
- 4. M. Morris R. Mano "Computer System Architecture" 3rd Edition 2007
- 5. David A. Patterson "Computer Architecture: A Quantitative Approach", Morgan Kaufmann; 5th edition 2011

THANK YOU