SNS COLLEGE OF TECHNOLOGY, COIMBATORE - 641035
 (An Autonomous Institution)

DEPARTMENT OF MECHANICAL ENGINEERING

19GET275 \& VQAR -I

Unit I - Quatitative Ability I

Number Theory

Number theory is a branch of mathematics that deals with the properties and relationships of numbers, especially integers. It is one of the oldest and most fundamental areas of mathematics, with roots dating back to ancient civilizations. Number theory explores various topics related to integers, such as divisibility, prime numbers, congruence, and Diophantine equations.

Some key concepts and areas within number theory:

1. Divisibility: Number theory begins with the concept of divisibility, where one integer can be divided by another without leaving a remainder. The fundamental theorem of arithmetic states that every positive integer can be uniquely factorized into prime numbers.
2. Prime Numbers: Prime numbers are natural numbers greater than 1 that have only two distinct positive divisors: 1 and themselves. They play a central role in number theory. The distribution of prime numbers and the existence of infinitely many primes are well-known conjectures in number theory.
3. Congruences: Congruences involve relationships between integers that have the same remainder when divided by a fixed integer. Modular arithmetic is a key tool in number theory and is used to study congruences.
4. Diophantine Equations: Diophantine equations are equations that involve only integer solutions. A famous example is Fermat's Last Theorem, which states that there are no three positive integers a, b, and c that satisfy the equation $a^{\wedge} n+b^{\wedge} n=c^{\wedge} n$ for any integer value of n greater than 2 .
5. Number Theoretic Functions: Number theory also deals with functions like the Euler's totient function, which counts the number of positive integers less than a given integer that are coprime to it. Other functions include the divisor function and the Möbius function.
6. The Riemann Hypothesis: The Riemann Hypothesis is one of the most famous unsolved problems in mathematics and is closely related to the distribution of prime numbers. It posits that all non-trivial zeros of the Riemann zeta function have a specific form.
7. Analytic Number Theory: This branch of number theory combines techniques from complex analysis with number theory to study the distribution of prime numbers and related topics.
8. Algebraic Number Theory: Algebraic number theory extends number theory by introducing concepts from abstract algebra, particularly the study of number fields and algebraic integers.
9. Computational Number Theory: With the advent of computers, computational methods have become essential in number theory for solving problems, conducting searches for large primes, and verifying conjectures.

Divisibility Rules

Rule for $\mathbf{2}$ - A number is divisible by 2 when the number ends with $0,2,4,6,8$.
Rule for 3 - If the sum of digit is divisible by 3 than the number is divisible by 3 .
Rule for 4 - If the last two digit is divisible by 4, than the number is divisible by 4.
Rule for 5 - Number is divisible by 5 if the last digit is 0 or 5 .
Rule for 6 - A number is divisible by if number is divisible by 2 and 3.
Rule for 7 - Double the last digit and subtract it from the remaining leading truncated number to check if the result is divisible by 7 until no further division is possible Rule for 8 - If the last 3 number is divisible by 8 than the number is divisible by 8 .

Rule for 9 - Same as divisibility of 3 but sum of digits is divided by 9 in place of 3
-Rule for $\mathbf{1 0}$ - If the last digit is 0 than the number is divisible by 10 .

UNIT I
 QUANTITATIVE ABILITY I

Number theory- Shortcuts, Divisibility rule- Unit place deduction-LCM \&HCF, Square root and Cube Root, Decimal \& Fraction Percentage, Profit, loss and discount, Simple and compound interest, Ratio \& Proportions,

Mixtures \& Allegation, Partnership.

Number Theory

- Number System - represent in different forms
- Hindu-Arabic system - $0,1,2,3,4,5,6,7,8$ and 9 - Digits

Insignificant digit

0 Significant digits.

Numerals

Cardinal Numbers		Ordinal Numbers	
1	one	$1^{\text {th }}$	first
2	two	$2^{\text {nd }}$	second
3	three	$3^{\text {td }}$	third
4	four	$4^{\text {th }}$	fourth
5	five	$5^{\text {th }}$	fifth
6	six	$6^{\text {th }}$	sixth
7	seven	$7^{\text {th }}$	seventh
8	eight	$8^{\text {th }}$	eighth
9	nine	$9^{\text {th }}$	ninth
10	ten	$10^{\text {th }}$	tenth
11	eleven	$11^{\text {th }}$	eleventh
12	twelve	$12^{\text {th }}$	twelfth
13	thirteen	$13^{\text {th }}$	thirteenth
14	fourteen	$14^{4^{\text {th }}}$	fourteenth
15	fifteen	$15^{\text {th }}$	fifteenth
16	sixteen	$16^{\text {th }}$	sixteenth
17	seventeen	$17^{\text {th }}$	seventeenth
18	eighteen	$18^{\text {th }}$	eighteenth
19	nineteen	$19^{\text {th }}$	nineteenth
20	twenty	$20^{\text {th }}$	twentieth

1	I
2	II
3	III
4	IV
5	V
6	VI
7	VII
8	VIII
9	IX
10	X
11	XI
20	XX
30	XXX
40	XL
50	L
60	LX
70	LXX
80	LXXX
90	XC
100	C
200	CC
300	CCC
400	CD
500	D
600	DC
700	DCC
800	DCCC
900	CM
1000	M
1001	MI

I	V	X	L	C	D	M
1	5	10	50	100	500	1000

How to Write a Number?

- Right to left

Indian Place Value System								
CRORES	LAKHS		THOUSANDS		ONES			
TC	C	TL	L	T-TH	TH	H	T	O
		2	3	1	9	6	1	7

International Place Value Chart											
MILLIONS			THOUSANDS					ONES			
HM	TM	M	HTh	TTh	Th	H	T	O			
		2	3	1	9	6	1	7			

Face Value and Place Value of the Digits in a Number

Types of Numbers

Classification of Numbers

Even Numbers
Odd Numbers
Prime Numbers - 1 and itself
Composite - non-prime natural number
Coprimes - Two natural numbers
\& HCF is 1

Addition	+
Subtraction	-
Multiplication	x
Division	\div

1.Sum of natural numbers from 1 to n

$$
\frac{n(n+1)}{2}
$$

e.g Sum of natural numbers from 1 to $40=40(40+1) / 2=820$
2. Sum of squares of first n natural numbers is $=$

$$
\frac{n(n+1)(2 n+1)}{6}
$$

3. Sum of the squares of first n even natural numbers is

$$
\frac{2}{3} n(n+1)(2 n+1)
$$

4. Sum of cubes of first n natural numbers is

$$
\left[\frac{n(n+1)}{2}\right]^{2}
$$

5. Any number N can be represented in the decimal system of number as

$$
N=n_{k} 10^{k}+n_{k-1} 10^{k-1}+n \ldots+n_{i} 10+n_{0}
$$

Rule for 2 - A number is divisible by 2 when the number ends with 0,2,4,6,8.

Rule for 3 - If the sum of digit is divisible by 3 than the number is divisible by 3 .

Rule for 4 - If the last two digit is divisible by 4 , than the number is divisible by 4 .

Rule for 5 - Number is divisible by 5 if the last digit is 0 or 5 .

Divisibility Rules

- Rule for 6 - A number is divisible by if number is divisible by 2 AND 3.
- Rule for 7 - Double the last digit and subtract it from the remaining leading truncated number to check if the result is divisible by 7 until no further division is possible
- Rule for $\mathbf{8}$ - If the last 3 number is divisible by 8 than the number is divisible by 8 .
- Rule for 9 - Same as divisibility of 3 but sum of digits is divide by 9 in place of 3
- Rule for $\mathbf{1 0}$ - If the last digit is 0 than the number is divisible by 10 .

Formulas

1. $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
2. $(a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right)$
3. $(a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right)$
4. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
5. $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
6. $\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$
7. $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)$
8. when $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$

https://www.indiabix.com/aptitude/numbers/001002

Number System Problems

- 1. Which one of the following is not a prime number?
A. 31
B. 61
$1397 \times 1397=$?
C. 71
A. 1951609
D. 91
B. 1981709
C. 18362619
D. 2031719

Answer: Option D
E. None of these

Explanation:

91 is divisible by 7 . So, it is not a prime number.
2. $\left(112 \times 5^{4}\right)=$?
A. 67000

$$
=(1400)^{2}+(3)^{2}-(2 \times 1400 \times 3)
$$

B. 70000

$$
=1960000+9-8400
$$

C. 76500
D. 77200

Answer: Option A
Explanation:

$$
1397 \times 1397=(1397)^{2}
$$

$$
=(1400-3)^{2}
$$

$=1960009-8400$
$=1951609$.

Answer: Option B

Explanation:
$\left(112 \times 5^{4}\right)=112 \times\left(\frac{10}{2}\right)^{4}=\frac{112 \times 10^{4}}{2^{4}}=\frac{1120000}{16}=70000$
$(935421 \times 625)=$?
A. 575648125
B. 584638125
C. 584649125
D. 585628125

Answer: Option B

Explanation:

$935421 \times 625=935421 \times 5^{4}=935421 \times\left(\frac{10}{2}\right)^{4}$
$=\frac{935421 \times 10^{4}}{2^{4}}=\frac{9354210000}{16}$
$=584638125$

What least number must be added to 1056 , so that the sum is completely divisible by 23 ?
A. 2
B. 3
C. 18
D. 21
E. None of these

Answer: Option A

Explanation:
23) $1056(45$

92
--
136
115

21

```
Required number = (23-21)
\(=2\).
```

How many of the following numbers are divisible by 132 ?
264, 396, 462, 792, 968, 2178, 5184, 6336
A. 4
B. 5
C. 6
$132=4 \times 3 \times 11$
D. 7

So, if the number divisible by all the three number 4, 3 and 11, then the number is divisible by 132 also.
$264 \rightarrow 11,3,4(/)$
$396 \rightarrow 11,3,4(/)$
$462 \rightarrow 11,3(X)$
$792 \rightarrow 11,3,4(/)$
$968 \rightarrow 11,4(X)$
$2178 \rightarrow 11,3(X)$
$5184 \rightarrow 3,4(X)$
$6336 \rightarrow 11,3,4(/)$
Therefore the following numbers are divisible by $132: 264,396,792$ and 6336.
Required number of number $=4$.

The largest 4 digit number exactly divisible by 88 is:
A. 9944
B. 9768
C. 9988
D. 8888
E. None of these

Answer: Option A

Explanation:
Largest 4-digit number $=9999$
88) 9999 (113

88

119
88
\qquad
319
264

55

Required number $=$ (9999-55)

Type 1:Find the largest or smallest number
Question 1. Find the smallest 4 digit number which is exactly divisible by 41?
Options.
A. 1000
B. 1023
C. 1025
D. 1012

Solution Smallest 4 digit number is 1000
On dividing 1000 by 41 , remainder $=16$
Required number $=1000+(41-16)=1025$
Correct option: C
Question 2. Find the Largest 3-digit number which is exactly divisible by $\mathbf{2 5 ?}$ Options.
A. 975
B. 905
C. 980
D. 950

Solution Largest Three digit numbers is 999
On dividing 999 by 25 , remainder $=24$
Required number $=999-24=975$
Correct option: A
Type 2:Which of the following numbers is/or not divisible by given number.
Question 1. Which of these numbers is divisible by 3 ?
Options.
A. 1003
B. 253
C. 1031
D. 1221

Solution $1003=1+0+0+3=4,4$ is not divisible by 3
$253=2+5+3=10,10$ is not divisible by 3
$1031=1+0+3+1=5,5$ is not divisible by 3
$1221=1+2+2+1=6,6$ is divisible by 3
Correct option: D
Question 2. Which of these numbers is not divisible by 10 ?
Options.
A. 1250
B. 1253
C. 1930
D. 1220

Solution Last digit of 1253 is not 0 so it is not divisible by 10
Correct option: B
Type 3: Tips and Tricks to Solve Divisibility Questions.
Find the remainder
Question 1. Find out the remainder of \backslash frac $\left\{2^{\wedge}\{12\}\right\}\{5\} 5212$
Options.
A. 1
B. 2
C. 0
D. 3

Solution Convert $2^{\wedge}\{12\} 212$ in multiple of $16=16 \times 16 \times 16$
$=2^{\wedge}\{4\} \backslash$ times $2^{\wedge}\{4\} \backslash$ times $2^{\wedge}\{4\} 24 \times 24 \times 24$
Now divide each number by 5
On dividing 16 by 5 we get remainder as 1
Now, multiply all the remainders $1 \times 1 \times 1=1$
Correct option: A
Question 2. Find out the remainder when $7^{\wedge}\{4\} 74$ is divided by 5.

Options.

A. 0
B. 4
C. 1
D. 2

Solution Divide 7 by 5 Remainder will 2
2 \times 2 \times 2 times $22 \times 2 \times 2 \times 2=16$
Now divide 16 by 5
On dividing 16 by 5 we get remainder as 1
Correct option: C

