UNIT 2 – ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Quadratic form

DEFENITION OF QUADRATIC FORM:

A homogeneous polynomial of degree 2 with any number of variables are known as quadratic form

$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = 0$$

$$\begin{bmatrix} co \ eff \ of \ x^2 & \frac{1}{2}co \ eff \ of \ xy & \frac{1}{2}co \ eff \ of \ xz \\ \frac{1}{2}co \ eff \ of \ yx & co \ eff \ of \ x^2 & \frac{1}{2}co \ eff \ of \ yz \\ \frac{1}{2}co \ eff \ of \ zx & \frac{1}{2}co \ eff \ of \ zy & co \ eff \ of \ z^2 \end{bmatrix}$$

WORKING RULE:

<u>STEP 1</u>: Write the matrix o the quadratic form .then find $D=N^TAN$

By orthogonal transformation.

<u>STEP 2</u>: Find $Q = Y^T DY$

INDEX OF QUADRATIC FORM

The no of positive square terms in the canonical form is called the index of the quadratic form.It is denoted by p

SIGNATURE OF QUADRATIC FORM

The different of positive and negative square terms are called signature of quadratic terms .denoted by s

s=2p-r

NATURE OF QUDARTIC FORM :

UNIT 2 – ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Quadratic form	
Positive definite	Ex: 1,2,2
Negative definite	Ex: -1,-2-,2
Semi Positive	Ex: 0,1,2
Semi negative	Ex: 0,-1,-2
Indefinite	Ex: -1,1,2
	-2,-1,1

Problems:

1. Find the nature of the given equation $2x^2 + 2xy + 3y^2 = 0$

<u>STEP 1</u>: The matrix form

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$$

 c_1 = Sum Of Diagonal Elements

 $c_2 = |A| = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 5$

The characteristic equation is

$$\lambda^2 - 5\lambda + 5 = 0$$

Here c_1 and c_2 are positive

Hence the nature of the given matrix is positive definite