UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

DEFENITION OF QUADRATIC FORM:

A homogeneous polynomial of degree 2 with any number of variables are known as quadratic form

$$
\begin{gathered}
x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=0 \\
{\left[\begin{array}{ccc}
\text { co eff of } x^{2} & \frac{1}{2} \text { co eff of } x y & \frac{1}{2} \text { co eff of } x z \\
\frac{1}{2} \text { co eff of } y x & \text { co eff of } x^{2} & \frac{1}{2} \text { co eff of } y z \\
\frac{1}{2} \text { co eff of } z x & \frac{1}{2} \text { co eff of } z y & \text { co eff of } z^{2}
\end{array}\right]}
\end{gathered}
$$

WORKING RULE:

STEP 1: Write the matrix o the quadratic form .then find $\mathrm{D}=N^{T} A N$
By orthogonal transformation.
STEP 2: Find $Q=Y^{T} D Y$

INDEX OF QUADRATIC FORM

The no of positive square terms in the canonical form is called the index of the quadratic form.It is denoted by p

SIGNATURE OF QUADRATIC FORM

The different of positive and negative square terms are called signature of quadratic terms .denoted by s

$$
\mathrm{s}=2 \mathrm{p}-\mathrm{r}
$$

NATURE OF OUDARTIC FORM :

Positive definite Ex: 1,2,2

Negative definite Ex: -1,-2-,2

Semi Positive Ex: 0,1,2

Semi negative Ex: 0,-1,-2
Indefinite \quad Ex: $-1,1,2$
$-2,-1,1$

Problems:

1.Find the nature of the given equation $2 x^{2}+2 x y+3 y^{2}=0$

STEP 1: The matrix form

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right)
$$

$c_{1}=$ Sum Of Diagonal Elements

$$
=2+3=5
$$

$c_{2}=|A|=\left|\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right|=5$
The characteristic equation is
$\lambda^{2}-5 \lambda+5=0$
Here c_{1} and c_{2} are positive
Hence the nature of the given matrix is positive definite

