CHEMICAL VAPOUR DEPOSITION (CVD)

CVD PROCESS

Chemical vapor deposition (CVD) is parent to a family of processes whereby a solid material is deposited from a vapor by a chemical reaction occurring on or in the vicinity of a normally heated substrate surface. The resulting solid material is in the form of a thin film, powder, or single crystal.

Gas precursor inlet

APPLICATIONS

- CVD processes are used by many industries such as the aircraft and automotive industries.
- They are used to modify surfaces to promote adhesion. Through the CVD process, coatings increase the longevity of materials, such as making metals resistant to rust and corrosion.

ADVANTAGES

- Can be applied to a wide variety of base materials including ceramics, glass, metals and metal alloys.
- Can coat precision surfaces and intricate surfaces including seal areas and internal surfaces.
- Can withstand exposure to <u>low</u> and high temperature and extreme temperature variation.

DISADVANTAGES

- Typically applied at higher temperatures (depending on the precursor).
- Difficult to mask surface. Usually an all or nothing coating.
- Size limited to reaction chamber capacity.
- Parts must be broken down into individual components
- Not an "on site" process, parts must be shipped to a coating center.

PHYSICAL VAPOUR DEPOSITION (PVD)

PVD PROCESS

Physical vapour deposition (PVD) is a process used to produce a metal vapour that can be deposited on electrically conductive materials as a thin, highly adhered pure metal or alloy coating.

APPLICATIONS

PVD is used in the manufacture of a wide range of goods, including

- Semiconductor devices
- Aluminized PET film for balloons
- Snack bags
- Optical coatings
- Filters
- Coated cutting tools for metalworking and wear resistance
- Highly reflective films for decorative displays.

ADVANTAGES

- It does not require the use of chemical reagents or cleaning posttreatments, so it has a very low environmental impact.
- PVD can be applied to any type of inorganic material.
- The coatings obtained by PVD have great adhesion, resistance and durability.

DISADVANTAGES

High cost

The PVD coating process can be expensive, especially for large surfaces or complex shapes.

Limited thickness

PVD coatings are thin, usually less than a few microns thick. As a result, they may not provide adequate protection for some applications.

• Special Equipment

The PVD coating process requires specialized equipment, which can be expensive and requires trained personnel.

ELECTROPLATING

ELECTROPLATING PROCESS

Electroplating is basically the process of plating a metal onto the other by hydrolysis mostly to prevent corrosion of metal or for decorative purposes. The process uses an electric current to reduce dissolved metal cations to develop a lean coherent metal coating on the electrode. Electroplating is often applied in the electrical oxidation of anions on a solid substrate like the formation of silver chloride on silver wire to form silver chloride electrodes.

APPLICATIONS

- Aesthetics
- Commercial applications
- To prevent corrosion
- Conduction of Electricity
- Reduce friction
- To protect from radiation

ADVANTAGES

- 1. **Improved aesthetics** Electroplating can be used to enhance the appearance of a variety of objects by adding a decorative or functional finish.
- 2. Enhanced durability Electroplating can improve the durability of an object by adding a layer of protection against wear and corrosion.
- 3. **Increased conductivity** Electroplating can be used to improve the conductivity of an object, making it more suitable for use in electrical applications.

DISADVANTAGES

- 1. **Cost** Electroplating can be a costly process, particularly for large or complex objects.
- 2. Limited thickness The thickness of the electroplated layer is limited by the thickness of the substrate and the plating process itself.
- 3. **Complexity** Electroplating can be a complex process that requires specialized equipment and expertise.
- 4. **Potential for defects** Electroplating can result in defects such as blisters, cracks, and uneven coverage if not done properly.