SNS COLLEGE OF TECHNOLOGY

Coimbatore-36.

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

COURSE NAME : 23CST101-PROBLEM SOLVING \& C PROGRAMMING

I YEAR/ I SEMESTER

UNIT - I INTRODUCTION TO PROBLEM SOLVING TECHNIQUES

Topic: Simple Strategies for Developing Algorithm
Mrs.Papithasri K
Assistant Professor
Department of Computer Science and Engineering

Simple Strategies for Developing Algorithm

They are two commonly strategies used in developing algorithm

1. Iteration
2. Recursion

Iteration:

The iteration is when a loop repeatedly executes till the controlling condition becomes false.
The iteration is applied to the set of instructions which we want to get repeatedly executed.

Iteration includes "initialization, condition, and execution" of statement within loop and update (increments and decrements) the control variable.

A sequence of statements is executed until a specified condition is true is called iterations.

1. for loop
2. While loop

Iteration

for loop

Smitax forfors	Exampe:Primtinatual numbers
$\begin{aligned} & \text { FOR(start-value to end-radue) DO } \\ & \text { statement } \\ & \ldots \text { ENDFOR } \end{aligned}$	BEGIN
	GETII
	NTIALIIEF
	FOR (iswi) $)^{\text {d }}$
	PRNT!
	Fit
	1
	ENDFOR
	END

\#incIudesstdio.h>
int main()
int main()
{
{
int Number, i;
int Number, i;
printf("\n Please Enter any Integer Value : ");
printf("\n Please Enter any Integer Value : ");
scanf("%d", 8Number);
scanf("%d", 8Number);
printf("\n List of Natural Numbers from 1 to %d are \n", Number);
printf("\n List of Natural Numbers from 1 to %d are \n", Number);
for(i=1; i<=Number; i++)
for(i=1; i<=Number; i++)
|
|
printf(" %d \t", i);
printf(" %d \t", i);
}
}
return 0;
return 0;

Iteration

while loop

Syntax for While:	Examule: Print natural numbers
WHILE (condition) DO statement ENDWHIIE	BEGIN GETII NITIALIEE $=1$ WHILE($(=1 \pi)$ DO PRNTI
	$\mathrm{i}+\mathrm{i}+$
	ENDWHIE
	END

/* C Program to Print Natural Numbers from 1 to N using While Loop */
\#include<stdio.h>
int main0
\{
int Number, $\mathrm{i}=1$;
printf("\n Please Enter any Integer Value : "); scanf("\%d", \&Number);
printf(" $\backslash \mathrm{n}$ List of Natural Numbers from 1 to \%d are $\backslash \mathrm{n}$ ", Number); while(i <= Number)
\{
printf(" \%d \t", i);
i++;
\}
return 0;
\}

Flow chart for (for loop \& while loop)

Recursion

Recursions:

A function that calls itself is known as recursion.
Recursion is a process by which a function calls itself repeatedly until some specified condition has been satisfied.

Algorithm for factorial of n numbers using recursion

Main function:
Step1: Start
Step2: Get n
Step3: call factorial(n)
Step4: print fact
Step5: Stop
Sub function factorial(n):
Step1: if($\mathrm{n}==1$) then fact=1 return fact
Step2: else fact=n*factorial(n-1) and return fact

Pseudo code for factorial using recursion:
Main function:
BEGIN
GET n
CALL factorial(n)
PRINT fact
END

Sub function factorial(n):

```
IF(n==1) THEN
    fact=1
    RETURN fact
    ELSE
        RETURN fact = n * factorial (n-1)
```


Recursion

Project Classes Debug test.c
\#include<stdio.h>
\#include<conio.h>
\#include<con
void main()
4 Ø \{
int $n=0, f=0$;
printf("enter the number");
scanf("\%d", \&n);
$\mathrm{f}=\mathrm{fact}(\mathrm{n})$;
printf("factorial of \%d is \%d", $n, f)$;
int fact(int n)
$12 \square$
13 if($n==1$)
return 1;
else
return(n^{*} fact($\left.n-1\right)$);
\}
$\square \mathrm{C}: \backslash$ Users $\backslash \mathrm{Ad} \backslash$ Documents \backslash test.exe

enter the number 6

factorial of 6 is 720
Process exited after 2.411 seconds with return value 21
Press any key to continue

