UNIT - V - TURBINES

PELTON WHEEL:

	U2 V2	V12 V52	
Vw1 =	1	- PI	>
r u,	, ,	Vr. 2	
Symbol		Description	Unit
$u_1 \& u_2$	-	Tangential Velocity of Runner at Inlet & Outlet	$m_{/_S}$
$v_{r1} \& v_{r2}$	-	Relative Velocity at Inlet & Outlet	$m_{/_S}$
$v_{w1} \& v_{w2}$		Whirl Velocity at Inlet & Outlet	$m_{/_S}$
$V_1 \& V_2$		Absolute Velocity at Inlet & Outlet	$m_{/_S}$
$v_{f1} \& v_{f2}$	\rightarrow	Flow Velocity at Inlet & Outlet Angle made by Absolute	$m_{/_S}$
β	٩	Velocity at Outlet with the Direction of Motion of Vane	Degree
ϕ	\rightarrow	Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane	Degree

TANGENTIAL VELOCITY AT INLET AND OUTLET (OR) VELOCITY OF WHEEL:

$$u = \frac{\pi DN}{60}$$

Symbol		Description	Unit
D	\longrightarrow	Diameter of Runner	m
N	\longrightarrow	Speed of Impeller	rpm

VELOCITY OF JET:

$$V_1 = C_v \sqrt{2gH}$$

$$C_v = 0.97 - 0.99$$

Symbol		Description	Unit
C_{v}	\rightarrow	Coefficient of Velocity	
g		Acceleration due to Gravity	$m/_{S^2}$
H		Head	m

VELOCITY OF WHEEL:

$$u = k_u \sqrt{2gH}$$
$$k_u = 0.43 - 0.45$$

Symbol
 Description
 Unit

$$k_u$$
 \longrightarrow Speed Ratio

 g
 \longrightarrow Acceleration due to Gravity
 $m/_{s^2}$
 H
 \longrightarrow Head
 m

FROM INLET VELOCITY TRIANGLE DIAGRAM:

$$V_{w1} = V_1$$

$$V_{w1} = u_1 + V_{r1}$$

Symbol		Description	Unit
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{r1}	\longrightarrow	Relative Velocity at Inlet	$m_{/_S}$
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/_S}$

FROM OUTLET VELOCITY TRIANGLE DIAGRAM:

$$\cos \phi = \frac{u_2 + v_{w2}}{v_{r2}}$$

$$\tan \phi = \frac{v_{f2}}{u_2 + v_{w2}}$$

$$\sin \phi = \frac{v_{f2}}{v_{r2}}$$

$$\tan \beta = \frac{v_{f2}}{v_{w2}}$$

Symbol		Description	Unit
u_2		Tangential Velocity of Runner at Outlet	$m_{/_S}$
v_{r2}	\rightarrow	Relative Velocity at Outlet	$m_{/_S}$
v_{w2}	→	Whirl Velocity at Outlet	$m_{/_S}$
v_{f2}	\longrightarrow	Flow Velocity at Outlet	$m_{/_S}$

WORK DONE BY JET PER SECOND:

$$W = \rho Q \left[v_{w1} + v_{w2} \right] u$$

Symbol		Description	Unit
u	\longrightarrow	Tangential Velocity of Runner	$m_{/_S}$
$v_{w1} \& v_{w2}$	\longrightarrow	Whirl Velocity at Inlet & Outlet	$m_{/_S}$
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$

HYDRAULIC EFFICIENCY:

$$\eta_{hyd} = \frac{2[v_{w1} + v_{w2}]u}{{V_1}^2}$$

Symbol		Description	Unit
u	\longrightarrow	Tangential Velocity of Runner	$m_{/_S}$
$v_{w1} \& v_{w2}$	\longrightarrow	Whirl Velocity at Inlet & Outlet	$m_{/_S}$
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/s}$

OVERALL EFFICIENCY:

$$\eta_o = \frac{Shaft\ Power}{Input\ Power}$$

$$\eta_o = \frac{S.P}{\rho g Q H}$$

Symbol	. (Description	Unit
ho		Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$
g	\rightarrow	Acceleration due to Gravity	$m/_{S^2}$
Н	\ 	Head	m
S.P	1	Shaft Power	W

DISCHARGE OF SINGLE JET:

$$q = \frac{\pi}{4} * d^2 * V_1$$

Symbol		Description	Unit
d	\longrightarrow	Diameter of Jet	m
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/s}$
\bar{q}	\longrightarrow	Discharge of Single Jet	$m^3/_S$

NUMBER OF JET:

$$n = \frac{Q}{q}$$

Symbol		Description	Unit
Q	\longrightarrow	Discharge	$m^3/_S$
q	\longrightarrow	Discharge of Single Jet	m^3/s

NUMBER OF BUCKET:

$$Z = 15 + \frac{D}{2d}$$

Symbol		Description	Uni	t
d	\longrightarrow	Diameter of Jet	m	
D	\longrightarrow	Diameter of Runner	m	

DIMENSIONS OF BUCKET:

Axial Width B = 4.5d

Radial Length L = 2.5d

 $Depth\ of\ Bucket\ T=d$

Symbol	Description	Unit
d -	Diameter of Jet	m

KINETIC ENERGY OF JET:

$$K.E \ of \ Jet = \frac{1}{2} \ m \ {V_1}^2$$

Since
$$m = \rho AV$$

Therefore K. E of Jet =
$$\frac{1}{2} \rho * A * V_1 * V_1^2$$

Since
$$Q = AV$$

Therefore K. E of Jet =
$$\frac{1}{2} \rho * Q * V_1^2$$

POWER LOST IN NOZZLE:

 $Input\ Power = Kinetic\ Energy + Power\ Lost\ in\ Nozzle$

POWER LOST IN RUNNER:

Input Power

- $= Power\ of\ Shaft + Power\ Lost\ in\ Nozzle$
- + Power Lost in Runner
- + Power Lost Due to Mechanical Resistance

RESULTANT FORCE ON BUCKET:

$$F = \rho Q \left[v_{w1} + v_{w2} \right]$$

Symbol		Description	Unit
F	\rightarrow	Resultant Force on Bucket	N
$v_{w1} \& v_{w2}$		Whirl Velocity at Inlet & Outlet	$m_{/_S}$
ρ	\longrightarrow	Density	$^{kg}/_{m^3}$
Q		Discharge	$m^3/_S$

TORQUE:

$$T = F * \frac{D}{2}$$

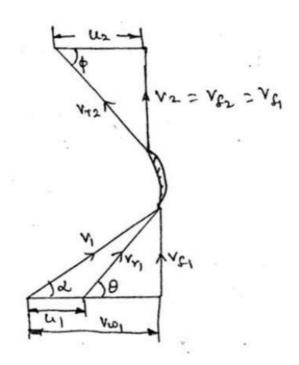
Symbol		Description	Unit
F	\longrightarrow	Resultant Force on Bucket	N
D	\longrightarrow	Diameter of Runner	m
T	\longrightarrow	Torque	N-m

POWER:

$$P = \frac{2\pi NT}{60}$$

Symbol		Description	Unit
P	\longrightarrow	Power	W
T	\longrightarrow	Torque	N-m
N	\longrightarrow	Speed of Shaft	Rpm

SPECIFIC SPEED:


$$N_S = \frac{N\sqrt{Q}}{H^{3/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

Symbol		Description	Unit
Q	\rightarrow	Discharge	$m^3/_S$
Н	\rightarrow	Head	m
P	→	Power	kW
N	\ 	Speed	rpm
$N_{\rm c}$	-	Specific Speed	

REACTION TURBINE:

INWARD FLOW REACTION TURBINE:

Symbol		Description	Unit
$u_{1}\&u_{2}$	\rightarrow	Tangential Velocity of Runner at Inlet & Outlet	$m_{/_S}$
$v_{r1} \& v_{r2}$	-	Relative Velocity at Inlet & Outlet	$m_{/_S}$
$v_{w1} \& v_{w2}$	\longrightarrow	Whirl Velocity at Inlet & Outlet	$m_{/_S}$
$v_{w1} \& v_{w2} \ V_1 \& V_2 \ v_{f1} \& v_{f2}$	\rightarrow	Absolute Velocity at Inlet & Outlet	$m_{/_S}$
$v_{f1} \& v_{f2}$	\rightarrow	Flow Velocity at Inlet & Outlet	$m_{/_S}$
α	-	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
heta	\longrightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree
$oldsymbol{\phi}$	\longrightarrow	Angle made by Relative Velocity at Outlet with the	Degree

TANGENTIAL VELOCITY AT INLET:

$$u_1 = \frac{\pi d_1 N}{60}$$
Symbol
$$d_1 \longrightarrow \begin{array}{c} \text{Description} & \text{Unit} \\ \text{Inlet } (\textit{or}) \text{ External} \\ \text{Diameter} & m \\ N \longrightarrow \text{Speed of Turbine} & rpm \end{array}$$

TANGENTIAL VELOCITY AT OUTLET:

$$u_2 = \frac{\pi d_2 N}{60}$$
Symbol
$$d_2 \longrightarrow \begin{array}{c} \text{Description} & \text{Unit} \\ \text{Outlet } (\textit{or}) \text{ Internal} \\ \text{Diameter} & m \\ N \longrightarrow \begin{array}{c} \text{Speed of Turbine} & \textit{rpm} \end{array}$$

FROM INLET VELOCITY TRIANGLE DIAGRAM:

$$\sin \alpha = \frac{v_{f1}}{V_1}$$

$$\cos \alpha = \frac{v_{w1}}{V_1}$$

$$\tan \alpha = \frac{v_{f1}}{v_{w1}}$$

$$\sin \theta = \frac{v_{f1}}{v_{r1}}$$

$$\cos \theta = \frac{v_{w1} - u_1}{v_{r1}}$$

$$\tan \theta = \frac{v_{f1}}{v_{w1} - u_1}$$

Symbol		Description	Unit
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/_S}$
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{r1}	\longrightarrow	Relative Velocity at Inlet	$m_{/_S}$
α	\longrightarrow	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	\rightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree

RELATIVE VELOCITY AT INLET:

$$v_{r1} = \sqrt{v_{f1}^2 + (v_{w1} - u_1)^2}$$

Symbol		Description	Unit
v_{r1}	\rightarrow	Relative Velocity at Inlet	$m_{/_S}$
v_{w1}	→	Whirl Velocity at Inlet	$m_{/_S}$
v_{f1}	-	Flow Velocity at Inlet	$m_{/_S}$
u_1	-	Tangential Velocity of Runner at Inlet	$m_{/_S}$

DISCHARGE:

$$Q=\pi d_1b_1v_{f1}=\pi d_2b_2v_{f2}$$

$$Q=Av_{f1}=Av_{f2}=A_{f1}v_{f1}=A_{f2}v_{f2}$$
 Symbol Description Unit

$v_{f1} \& v_{f2}$	\longrightarrow	Flow Velocity at Inlet & Outlet	$m_{/_S}$
$d_1 \& d_2$	\longrightarrow	Diameter of Impeller at Inlet & Outlet	m
$b_1 \& b_2$	\longrightarrow	Width of Impeller at Inlet & Outlet	m
Q	\longrightarrow	Discharge	$m^3/_S$
\boldsymbol{A}	\longrightarrow	Area of Runner	m^2
$A_{f1}&A_{f2}$	\longrightarrow	Area of Flow at Inlet & Outlet	$m_{/_S}$

MASS OF WATER FLOWING THROUGH THE RUNNER:

$$m = \rho Q$$

Symbol		Description	Unit
Q	\longrightarrow	Discharge	$m^3/_S$
ho	\longrightarrow	Density	kg/m^3

HEAD AT INLET OF TURBINE:

$$H = \frac{1}{g} * v_{w1} * u_1 + \frac{v_{f1}^2}{2g}$$

Symbol		Description	Unit
v_{w1}	\rightarrow	Whirl Velocity at Inlet	$m_{/_S}$
v_{f1}	\rightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	>	Tangential Velocity of Runner at Inlet	$m_{/_S}$
g -		Acceleration due to gravity	$m_{/_{S^2}}$

INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:

$$P = \rho g Q H$$

Symbol		Description	Unit
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$

$g \longrightarrow$		Acceleration due to Gravity	$m_{/_{S^2}}$
Н	\longrightarrow	Head	m

POWER DEVELOPED BY TURBINE:

$$P = \rho * Q * v_{w1} * u_1$$
Symbol Description Unit
$$\rho \longrightarrow \text{Density} \qquad \frac{kg}{m^3}$$

$$Q \longrightarrow \text{Discharge} \qquad m^3/_s$$

$$v_{w1} \longrightarrow \text{Whirl Velocity at Inlet} \qquad m/_s$$

$$u_1 \longrightarrow \text{Tangential Velocity of} \qquad m/_s$$

Runner at Inlet

HYDRAULIC EFFICIENCY:

 u_1

$$\eta_{hyd} = rac{v_{w1}u_1}{gH}$$

$$\eta_{hyd} = rac{Head\ Inlet - Head\ Loss}{Head\ Inlet}$$

Symbol	Description	Unit
u_1	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{w1}	→ Whirl Velocity at Inlet	$m_{/_S}$
g .	Acceleration due to Gravity	$m_{/_{S^2}}$
H	> Head	m

OVERALL EFFICIENCY:

$$\eta_o = \frac{Shaft\ Power}{Input\ Power}$$

$$\eta_o = \frac{S.P}{\rho aOH}$$

Symbol		Description	Unit
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$
g	\longrightarrow	Acceleration due to Gravity	$m_{/_{S^2}}$
H	\longrightarrow	Head	m
S.P	\longrightarrow	Shaft Power	W

SPEED RATIO:

$$K_u = \frac{u}{\sqrt{2gH}}$$

$$K_u = 0.6 - 0.9$$

$$K_u = 0.6 - 0.9$$

Symbol		Description	Unit
и	\rightarrow	Tangential Velocity	$m_{/_S}$
H	\rightarrow	Head	m
g	\rightarrow	Acceleration due to Gravity	$m_{/_{S^2}}$
K_{ν}	\rightarrow	Speed Ratio	

FLOW RATIO:

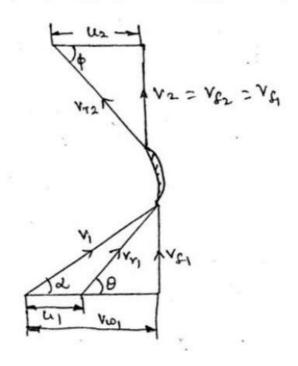
$$K_f = \frac{v_{f1}}{\sqrt{2gH}}$$

$$K_f = 0.15 - 0.3$$

$$K_f = 0.15 - 0.3$$

Symbol		Description	Unit
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
H	\rightarrow	Head	m
g	\rightarrow	Acceleration due to Gravity	$m/_{S^2}$
K_f	\longrightarrow	Flow Ratio	

SPECIFIC SPEED:


$$N_S = \frac{N\sqrt{Q}}{H^{3/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

Symbol		Description	Unit
Q	\longrightarrow	Discharge	$m^3/_S$
H	\longrightarrow	Head	m
P	\longrightarrow	Power	kW
N	\longrightarrow	Speed	rpm
$N_{\rm s}$	\longrightarrow	Specific Speed	

OUTWARD FLOW REACTION TURBINE:

Symbol Description Unit
$$u_1 \& u_2 \longrightarrow \begin{array}{c} \text{Description} & \text{Unit} \\ \text{Tangential Velocity of} \\ \text{Runner at Inlet \& Outlet} \end{array}$$

$v_{r1} \& v_{r2}$	\rightarrow	Relative Velocity at Inlet & Outlet	$m_{/_S}$
$v_{w1} \& v_{w2}$	\longrightarrow	Whirl Velocity at Inlet & Outlet	$m_{/_S}$
$V_1 \& V_2$	\longrightarrow	Absolute Velocity at Inlet & Outlet	$m_{/_S}$
$v_{f1} \& v_{f2}$	\longrightarrow	Flow Velocity at Inlet & Outlet	$m_{/_S}$
α	\longrightarrow	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	\longrightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree
φ	\rightarrow	Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane	Degree

TANGENTIAL VELOCITY AT INLET:

$$u_1 = \frac{\pi d_1 N}{60}$$

Symbol		Description	Unit
d_1	\rightarrow	Inlet (or) Internal Diameter	m
N		Speed of Turbine	rpm

TANGENTIAL VELOCITY AT OUTLET:

$$u_2 = \frac{\pi d_2 N}{60}$$

Symbol		Description	Unit
d_2	\longrightarrow	Outlet (<i>or</i>) External Diameter	m
N	\longrightarrow	Speed of Turbine	rpm

FROM INLET VELOCITY TRIANGLE DIAGRAM:

$$\sin \alpha = \frac{v_{f1}}{V_1}$$

$$\cos \alpha = \frac{v_{w1}}{V_1}$$

$$\tan \alpha = \frac{v_{f1}}{v_{w1}}$$

$$\sin \theta = \frac{v_{f1}}{v_{r1}}$$

$$\cos \theta = \frac{v_{w1} - u_1}{v_{r1}}$$

$$\tan \theta = \frac{v_{f1}}{v_{w1} - u_1}$$

Symbol		Description	Unit
v_{w1}	\rightarrow	Whirl Velocity at Inlet	$m_{/_S}$
V_1	→	Absolute Velocity at Inlet	$m_{/_S}$
v_{f1}	\rightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1		Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{r1}	→	Relative Velocity at Inlet	$m_{/_S}$
α	2,	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	\longrightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree

RELATIVE VELOCITY AT INLET:

$$v_{r1} = \sqrt{v_{f1}^2 + (v_{w1} - u_1)^2}$$

Symbol		Description	Unit
v_{r1}	\longrightarrow	Relative Velocity at Inlet	$m_{/_S}$
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$

DISCHARGE:

$$Q = \pi d_1 b_1 v_{f1} = \pi d_2 b_2 v_{f2}$$

$$Q = Av_{f1} = Av_{f2} = A_{f1}v_{f1} = A_{f2}v_{f2}$$

Symbol	Description	Unit
$v_{f1} \& v_{f2}$	Flow Velocity at Inlet & Outlet	$m_{/_S}$
$d_1 \& d_2$	Diameter of Impeller at Inlet & Outlet	m
$b_1 \& b_2$	Width of Impeller at Inle & Outlet	et m
Q	Discharge	$m^3/_S$
A	Area of Runner	m^2
$A_{f1}&A_{f2}$	Area of Flow at Inlet & Outlet	$m_{/_S}$

MASS OF WATER FLOWING THROUGH THE RUNNER:

$$m = \rho Q$$

Symbol		Description	Unit
Q	\longrightarrow	Discharge	$m^3/_S$
ho	\longrightarrow	Density	$^{kg}/_{m^3}$

INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:

$$P = \rho g Q H$$

Symbol		Description	Unit
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_{S}$
g	\longrightarrow	Acceleration due to Gravity	$m_{/_{S^2}}$
Н	\longrightarrow	Head	m

POWER DEVELOPED BY TURBINE:

$$P = \rho * Q * v_{w1} * u_1$$

Symbol		Description	Unit
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\rightarrow	Discharge	$m^3/_S$
v_{w1}	\rightarrow	Whirl Velocity at Inlet	$m_{/_S}$
u_1	\rightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$

HYDRAULIC EFFICIENCY:

$$\eta_{hyd} = \frac{v_{w1}u_1}{gH}$$

$$\eta_{hyd} = \frac{\textit{Head Inlet} - \textit{Head Loss}}{\textit{Head Inlet}}$$

Symbol		Description	Unit
u_1	\rightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
g	\longrightarrow	Acceleration due to Gravity	$m/_{S^2}$
H	\longrightarrow	Head	m

OVERALL EFFICIENCY:

$$\eta_o = \frac{Shaft\ Power}{Input\ Power}$$

$$\eta_o = \frac{S.P}{\rho g Q H}$$

Symbol		Description	Unit
ho	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$
g	\longrightarrow	Acceleration due to Gravity	$m/_{S^2}$
H	\longrightarrow	Head	m
S.P	\longrightarrow	Shaft Power	W

SPEED RATIO:

$$K_u = \frac{u}{\sqrt{2gH}}$$

$$K_{u} = 0.6 - 0.9$$

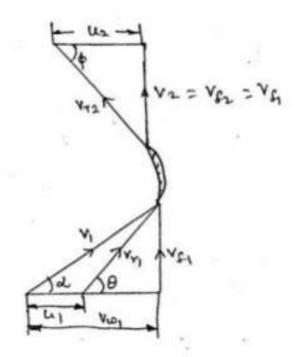
Symbol		Description	Unit
u	\rightarrow	Tangential Velocity	$m_{/_S}$
H	\rightarrow	Head	m
g	→	Acceleration due to Gravity	$m_{/_{S^2}}$
K.,	\rightarrow	Speed Ratio	

FLOW RATIO:

$$K_f = \frac{v_{f1}}{\sqrt{2gH}}$$

$$K_f = 0.15 - 0.3$$

Symbol	Description	Unit
v_{f1} -	→ Flow Velocity at Inlet	$m_{/_S}$
н —	→ Head	m
<i>g</i> –	Acceleration due to Gravity	$m_{/_{S^2}}$
K_f —	→ Flow Ratio	
CDECIFIC CDEED.		


SPECIFIC SPEED:

$$N_S = \frac{N\sqrt{Q}}{H^{3/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

Symbol		Description	Unit
Q	\rightarrow	Discharge	$m^3/_S$
Н	\rightarrow	Head	m
P	1	Power	kW
N	-	Speed	rpm
N_s	\rightarrow	Specific Speed	

FRANCIS TURBINE:

Symbol		Description	Unit
$u_1 \& u_2$	\rightarrow	Tangential Velocity of Runner at Inlet & Outlet	$m_{/_S}$
$v_{r1}\&v_{r2}$	>	Relative Velocity at Inlet & Outlet	$m_{/S}$
$v_{w1} \& v_{w2}$	>	Whirl Velocity at Inlet & Outlet	$m_{/_S}$
$V_1 \& V_2$	+	Absolute Velocity at Inlet & Outlet	$m/_S$
$v_{f1} \& v_{f2}$		Flow Velocity at Inlet & Outlet	$m_{/_S}$
α	}	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	→	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree
ϕ	>	Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane	Degree

TANGENTIAL VELOCITY AT INLET:

$$u_1 = \frac{\pi d_1 N}{60}$$

Symbol	Description	Unit
d_1	Inlet (or) External Diameter	m
N	→ Speed of Turbine	rpm

TANGENTIAL VELOCITY AT OUTLET:

$$u_2 = \frac{\pi d_2 N}{60}$$

Symbol Description Unit Outlet (or) Internal d_2 m Diameter N Speed of Turbine rpm

FROM INLET VELOCITY TRIANGLE DIAGRAM:

$$\sin \alpha = \frac{v_{f1}}{V_1}$$
$$\cos \alpha = \frac{v_{w1}}{V_1}$$

$$\cos \alpha = \frac{v_{w1}}{V_1}$$

$$\tan \alpha = \frac{v_{f1}}{v_{w1}}$$

$$\sin\theta = \frac{v_{f1}}{v_{r1}}$$

$$\cos\theta = \frac{v_{w1} - u_1}{v_{r1}}$$

$$\tan \theta = \frac{v_{f1}}{v_{w1} - u_1}$$

Symbol		Description	Unit
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/_S}$
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{r1}	\longrightarrow	Relative Velocity at Inlet	$m_{/_S}$
α		Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	\longrightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree

RELATIVE VELOCITY AT INLET:

$$v_{r1} = \sqrt{v_{f1}^2 + (v_{w1} - u_1)^2}$$

Symbol		Description	Unit
v_{r1}		Relative Velocity at Inlet	$m_{/s}$
v_{w1}	\rightarrow	Whirl Velocity at Inlet	$m_{/_S}$
v_{f1}		Flow Velocity at Inlet	$m/_S$
u_1	\rightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$

DISCHARGE:

$$Q = \pi d_1 b_1 v_{f1} = \pi d_2 b_2 v_{f2}$$

$$Q = A v_{f1} = A v_{f2} = A_{f1} v_{f1} = A_{f2} v_{f2}$$

Symbol	Description	Unit
$v_{f1} \& v_{f2}$ -	Flow Velocity at Inlet & Outlet	$m_{/S}$
$d_1 \& d_2$ -	Diameter of Impeller at Inlet & Outlet	m

$b_1 \& b_2$	\longrightarrow	Width of Impeller at Inlet & Outlet	m
Q	\longrightarrow	Discharge	$m^3/_S$
A	\longrightarrow	Area of Runner	m^2
$A_{f1}&A_{f2}$	\longrightarrow	Area of Flow at Inlet & Outlet	$m_{/_S}$

CIRCUMFERENTIAL AREA OF RUNNER:

$$A=\pi d_1b_1=\pi d_2b_2$$

Symbol		Description	Unit
$d_1\&d_2$	\longrightarrow	Diameter of Impeller at Inlet & Outlet	m
$b_1 \& b_2$	\longrightarrow	Width of Impeller at Inlet & Outlet	m
\boldsymbol{A}	\longrightarrow	Circumferential Area of Runner	m^2

MASS OF WATER FLOWING THROUGH THE RUNNER:

Symbol Description Unit
$$\begin{array}{ccc}
Q & \longrightarrow & \text{Discharge} & m^3/_S \\
\rho & \longrightarrow & \text{Density} & kg/_{m^3}
\end{array}$$

 $m = \rho Q$

INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:

$$P = \rho g Q H$$

Symbol		Description	Unit
ρ	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$
g	\longrightarrow	Acceleration due to Gravity	$m_{/_S^2}$
H	\longrightarrow	Head	m

POWER DEVELOPED BY TURBINE:

$$P = \rho * Q * v_{w1} * u_1$$

Symbol		Description	Unit
ρ	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_S$
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$

HYDRAULIC EFFICIENCY:

$$\eta_{hyd} = \frac{v_{w1}u_1}{gH}$$

$$\eta_{hyd} = \frac{Head\ Inlet - Head\ Loss}{Head\ Inlet}$$

Symbol		Description	Unit
u_1	1	Tangential Velocity of Runner at Inlet	$m_{/_S}$
v_{w1}		Whirl Velocity at Inlet	$m_{/_S}$
g	1	Acceleration due to Gravity	$m/_{S^2}$
H		Head	m

OVERALL EFFICIENCY:

$$\eta_o = \frac{Shaft\ Power}{Input\ Power}$$

$$\eta_o = \frac{S.P}{\rho gQH}$$

Symbol		Description	Unit
ρ	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_{S}$

SPEED RATIO:

$$K_u = \frac{u}{\sqrt{2gH}}$$

$$K_u = 0.6 - 0.9$$

Symbol		Description	Unit
и	\longrightarrow	Tangential Velocity	$m_{/s}$
H	\longrightarrow	Head	m
g	\rightarrow	Acceleration due to Gravity	$m_{/_{S^2}}$
K_{ν}	\longrightarrow	Speed Ratio	

FLOW RATIO:

$$K_f = \frac{v_{f1}}{\sqrt{2gH}}$$

$$K_f = 0.15 - 0.3$$

Symbol
 Description
 Unit

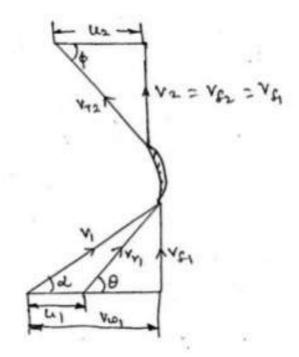
$$v_{f1}$$
 \longrightarrow Flow Velocity at Inlet
 $m/_s$
 H
 \longrightarrow Head
 m
 g
 \longrightarrow Acceleration due to Gravity
 $m/_{s^2}$
 K_f
 \longrightarrow Flow Ratio

BREADTH RATIO:

$$n=\frac{b_1}{d_1}$$

$$n = 0.1 - 0.4$$

Symbol		Description	Unit
b_1	\longrightarrow	Width of Runner at Inlet	m
d_1	\longrightarrow	Diameter of Runner at Inlet	m
n	\longrightarrow	Breadth Ratio	


SPECIFIC SPEED:

$$N_S = \frac{N\sqrt{Q}}{H^{3/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

Symbol		Description	Unit
Q	-	Discharge	$m^3/_S$
H	\rightarrow	Head	m
P		Power	kW
N	\rightarrow	Speed	rpm
$N_{\rm s}$		Specific Speed	

KAPLAN TURBINE:

Symbol		Description	Unit
$u_1 \& u_2$	\rightarrow	Tangential Velocity of Runner at Inlet & Outlet	$m_{/_S}$
$v_{r1} \& v_{r2}$	\rightarrow	Relative Velocity at Inlet & Outlet	$m_{/s}$
$v_{w1} \& v_{w2}$		Whirl Velocity at Inlet & Outlet	$m_{/_S}$
$V_1 \& V_2$	→	Absolute Velocity at Inlet & Outlet	$m_{/_S}$
$v_{f1} \& v_{f2}$	1	Flow Velocity at Inlet & Outlet	$m_{/_S}$
α	→	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	->	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree
ϕ	\rightarrow	Angle made by Relative Velocity at Outlet with the Direction of Motion of Vane	Degree

TANGENTIAL VELOCITY AT INLET:

$$u_1 = \frac{\pi D_o N}{60}$$

Symbol
 Description
 Unit

$$D_o$$
 Inlet (or) External Diameter
 m
 N
 Speed of Turbine
 rpm

TANGENTIAL VELOCITY AT OUTLET:

$$u_2 = \frac{\pi D_b N}{60} = \frac{\pi D_h N}{60}$$

$$\begin{array}{ccc} \textbf{Symbol} & \textbf{Description} & \textbf{Unit} \\ D_b \ or \ D_h & \longrightarrow & \text{Outlet } (or) \operatorname{Boss} (or) \operatorname{Hub} \\ N & \longrightarrow & \operatorname{Speed} \text{ of Turbine} & rpm \end{array}$$

FROM INLET VELOCITY TRIANGLE DIAGRAM:

$$\sin \alpha = \frac{v_{f1}}{V_1}$$

$$\cos \alpha = \frac{v_{w1}}{V_1}$$

$$\tan \alpha = \frac{v_{f1}}{v_{w1}}$$

$$\sin \theta = \frac{v_{f1}}{v_{r1}}$$

$$\cos \theta = \frac{v_{w1} - u_1}{v_{r1}}$$

$$\tan \theta = \frac{v_{f1}}{v_{w1} - u_1}$$

Symbol		Description	Unit
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m_{/_S}$
V_1	\longrightarrow	Absolute Velocity at Inlet	$m_{/S}$
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m/_S$
v_{r1}	\longrightarrow	Relative Velocity at Inlet	$m_{/_S}$
α	\rightarrow	Angle made by Absolute Velocity at Inlet with the Direction of Motion of Vane	Degree
θ	\rightarrow	Angle made by Relative Velocity at Inlet with the Direction of Motion of Vane	Degree

RELATIVE VELOCITY AT INLET:

$$v_{r1} = \sqrt{v_{f1}^2 + (v_{w1} - u_1)^2}$$

Symbol		Description	Unit
v_{r1}	+	Relative Velocity at Inlet	$m_{/S}$
v_{w1}	\rightarrow	Whirl Velocity at Inlet	$m_{/_S}$
v_{f1}	\rightarrow	Flow Velocity at Inlet	$m_{/_S}$
u_1	\rightarrow	Tangential Velocity of Runner at Inlet	$m_{/_S}$

DISCHARGE:

$$Q = \frac{\pi}{4} \big[D_0^2 - D_b^2 \big] v_{f1}$$

Symbol		Description	Unit
v_{f1}	\longrightarrow	Flow Velocity at Inlet	$m_{/_S}$
D_0	\longrightarrow	Inlet (or) External Diameter	m
D_b or D_h	\longrightarrow	Outlet (or) Boss (or) Hub Diameter	m

CIRCUMFERENTIAL AREA OF RUNNER:

$$A = \frac{\pi}{4} \left[D_0^2 - D_b^2 \right]$$

Symbol		Description	Unit
D_0	\longrightarrow	Inlet (or) External Diameter	m
D_b or D_h	\longrightarrow	Outlet (or) Boss (or) Hub Diameter	m
\boldsymbol{A}	\longrightarrow	Circumferential Area of Runner	m^2

MASS OF WATER FLOWING THROUGH THE RUNNER:

$$m = \rho Q$$

Symbol		Description	Unit
Q	-	Discharge	$m^3/_S$
ρ	\rightarrow	Density	$^{kg}/_{m^3}$

INPUT POWER TO TURBINE (OR) POWER GIVEN TO TURBINE:

$$P = \rho g Q H$$

Symbol		Description	Unit
ρ	-	Density	$^{kg}/_{m^3}$
Q		Discharge	$m^3/_S$
g	3	Acceleration due to Gravity	$m_{/_{S^2}}$
Н	\rightarrow	Head	m

POWER DEVELOPED BY TURBINE:

$$P = \rho * Q * v_{w1} * u_1$$

Symbol		Description	Unit
ρ	\longrightarrow	Density	$^{kg}/_{m^3}$
Q	\longrightarrow	Discharge	$m^3/_{s}$

$$v_{w1}$$
 \longrightarrow Whirl Velocity at Inlet $m/_S$
 u_1 Tangential Velocity of Runner at Inlet $m/_S$

HYDRAULIC EFFICIENCY:

$$\eta_{hyd} = \frac{v_{w1}u_1}{gH}$$

$$\eta_{hyd} = \frac{\textit{Head Inlet} - \textit{Head Loss}}{\textit{Head Inlet}}$$

Symbol		Description	Unit
u_1	\longrightarrow	Tangential Velocity of Runner at Inlet	$m_{/s}$
v_{w1}	\longrightarrow	Whirl Velocity at Inlet	$m/_{S}$
g	\longrightarrow	Acceleration due to Gravity	$m_{/_{S^2}}$
Н	\rightarrow	Head	m

OVERALL EFFICIENCY:

$$\eta_o = \frac{Shaft\ Power}{Input\ Power}$$

$$\eta_o = \frac{S.P}{\rho gQH}$$

Symbol		Description	Unit
ρ		Density	$^{kg}/_{m^3}$
Q	\rightarrow	Discharge	$m^3/_S$
g	\longrightarrow	Acceleration due to Gravity	$m/_{S^2}$
H	\longrightarrow	Head	m
S.P	\longrightarrow	Shaft Power	W

SPEED RATIO:

$$K_u = \frac{u}{\sqrt{2gH}}$$

$$K_u = 0.6 - 0.9$$

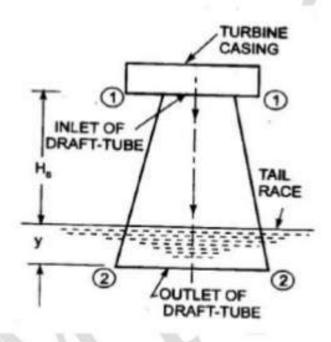
Symbol		Description	Unit
u	\longrightarrow	Tangential Velocity	$m_{/_S}$
H	\longrightarrow	Head	m
g	\rightarrow	Acceleration due to Gravity	$m/_{S^2}$
K.,	\longrightarrow	Speed Ratio	

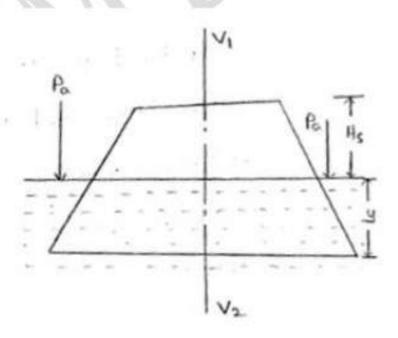
FLOW RATIO:

$$K_f = \frac{v_{f1}}{\sqrt{2gH}}$$

$$K_f = 0.15 - 0.3$$

Symbol		Description	Unit
v_{f1}	\rightarrow	Flow Velocity at Inlet	$m_{/s}$
H	/ 	Head	m
g	→	Acceleration due to Gravity	$m_{/_{S^2}}$
K_f	-	Flow Ratio	


SPECIFIC SPEED:


$$N_S = \frac{N\sqrt{Q}}{H^{3/4}}$$

$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

Symbol		Description	Unit
Q	\longrightarrow	Discharge	$m^3/_S$
H	\longrightarrow	Head	m
P	\longrightarrow	Power	kW
N	\longrightarrow	Speed	rpm
N_{S}	\longrightarrow	Specific Speed	

DRAFT TUBE:

Symbol		Description	Unit
$V_1 \& V_2$	\longrightarrow	Velocity at Inlet & Outlet	$m_{/_S}$
H_S	\longrightarrow	Vertical Height of Draft Tube Above Tail Race	m
y	\rightarrow	Distance of Bottom of Draft Tube from Tail Race	m

FROM BERNOULLI'S EQUATION:

LENGTH OF DRAFT TUBE:

$$L = H_s + y$$

Symbol		Description	Unit
L	-	Length of Draft Tube	m
H_S	-	Vertical Height of Draft Tube Above Tail Race	m
y	-	Distance of Bottom of Draft Tube from Tail Race	m

EFFICIENCY OF DRAFT TUBE:

$$\eta_d = \frac{\left(\frac{{V_1}^2}{2g} - \frac{{V_2}^2}{2g}\right) - h_f}{\frac{{V_1}^2}{2g}}$$

Symbol		Description	Unit
$V_1 \& V_2$	\longrightarrow	Velocity at Inlet & Outlet of Draft Tube	$m_{/_S}$
h_f	\longrightarrow	Head Loss	m
g	\longrightarrow	Acceleration due to gravity	$m/_{S^2}$

HYDRAULIC EFFICIENCY OF DRAFT TUBE:

 $\eta_{hyd} = \frac{\textit{Head Utilized by Turbine}}{\textit{Head Inlet of Turbine}}$

$$\eta_{hyd} = \frac{H - h_{ft} - h_{fd} - \frac{{v_2}^2}{2g}}{\frac{P_1}{\rho g} + \frac{{v_1}^2}{2g} + z_1}$$

Symbol		Description	Unit
P_1	\longrightarrow	Pressure at Inlet of Draft Tube	N/m^2
$V_1 \& V_2$	\rightarrow	Velocity at Inlet & Outlet of Draft Tube	$m/_S$
z_1	\rightarrow	Datum Head Inlet of Draft Tube	m
h_f	\longrightarrow	Head Loss	m
ρ	-	Density of Liquid	$^{kg}/_{m^3}$
g	\rightarrow	Acceleration due to gravity	$m_{/_{S^2}}$