SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35
Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

23EET101 / BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING I YEAR / I SEMESTER UNIT-I: ELECTRICAL CIRCUITS AND MEASUREMENTS

KIRCHOFFS LAW

TOPIC OUTLINE

-Kirchoff's Law
-KCL
-KVL
-Problems

OHMS LAW - RECAP

- $\begin{aligned} V= & I \times R \\ \text { - } I= & \underline{V} \\ & \end{aligned}$

- $\mathrm{R}=\underline{\mathrm{V}}$

I

KCL

- Kirchoff's Current Law (KCL) :

The sum of the current entering a node (junction point) equal to the sum of the currents leaving.

$$
\mathbf{I}_{a}+\mathbf{I}_{b}=\mathbf{I}_{\mathbf{c}}+\mathbf{I}_{d}
$$

I_{a}, I_{b}, I_{c}, and I_{d} can each be either a positive or negative number.

KVL

Kirchoff's Voltage Law (KVL):

- The algebraic sum of voltages around each loop is zero
- Σ voltage drops $-\Sigma$ voltage rises $=0$
- Or Σ voltage drops $=\Sigma$ voltage rises

EXAMPLE

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Assign current variables and directions
Use Ohm's law to assign voltages and polarities consistent with passive devices (current enters at the + side)

EXAMPLE

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Starting at node A , add the $1^{\text {st }}$ voltage drop: $+\mathrm{I}_{1} \mathrm{R}_{1}$

EXAMPLE

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Add the voltage drop from B to C through R_{2} : $+I_{1} R_{1}+I_{2} R_{2}$

EXAMPLE

- Kirchoff's Voltage Law around $1^{\text {st }}$ Loop

Subtract the voltage rise from C to A through Vs: $+I_{1} R_{1}+I_{2} R_{2}-V s=0$
Notice that the sign of each term matches the polarity encountered 1st

RECAP....

...THANK YOU

