SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35
Accredited by NBA-AICTE and Accredited by NAAC - UGC with A+ Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

23EET101 / BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING I YEAR / I SEMESTER UNIT-I: ELECTRICAL CIRCUITS

AC FUNDAMENTALS, POWER \& POWER FACTOR

TOPIC OUTLINE

-AC fundamentals
-Peak and RMS
-Power
-Real and Reactive Power
-Power factor

AC FUNDAMENTALS

PARAMETER VALUES:

- Instantaneous (v, i)
- Peak ($\mathrm{V}_{\mathrm{m}}, \mathrm{Im}_{\mathrm{m}}$)
- Average (Vave, lave)
- RMS (V, I or Vrms, Irms)

Parameters V and I are in sine wave.

AC FUNDAMENTALS

- Peak $\left(V_{m}, I_{m}\right)$: It is the maximum value
- Instantaneous (\mathbf{v}, \mathbf{i}) : The values at any instant. It may be voltage or current.
- Average (Vave, lave): Average value is the sum of instantaneous power in one period.
- It is also said to be as area under the curve divided by time.
- Average power - for half cycle is shown
- - for full cycle is ZERO

ROOT MEAN SQUARE (RMS)

The RMS value of a set of values (or a continuoustime waveform) is the square root of the arithmetic mean of the squares of the original values.

$$
\begin{aligned}
& m s=\frac{V p e a k}{\sqrt{2}}(\text { for an undistorted sine wave }) \\
& m s=\frac{V p e a k}{\sqrt{3}}(\text { for an undistorted triangle wave }) \\
& m s=\frac{V p e a k}{1}(\text { for a symmetrical square wave })
\end{aligned}
$$

RMS

RMS value for I and V is given

$$
\begin{aligned}
& I=I_{P} \sin \omega t \\
& V=V_{P} \sin \omega t
\end{aligned}
$$

Where,

POWER

- The power dissipated in a component is a product of the instantaneous voltage and the instantaneous current

$$
p=v i
$$

- In a resistive circuit the voltage and current are in phase - calculation of p is straightforward
- In reactive circuits, there will normally be some phase shift between v and i, and calculating the power becomes more complicated

POWER

LOAD (POWER CONSUMED)

- It is a any electric load on a circuit that does work.
- A device connected to the output of a circuit
- Example: Power windows, light bulbs, motors.

POWER

- Real power is the capacity of the circuit performing work in a particular time.
- It is the product of V, I and cosine angle of voltage and current
- Apparent power is the product of the current and voltage of the circuit
-Reactive power is the product of V, I and sine angle of voltage and current

POWER

Real Power
Reactive Power
$P=V I \cos \phi \quad$ watts or kW

Apparent Power $\quad S=$ VI VA or kVA
$\mathrm{Q}=V I \sin \phi \quad$ var or kVAR

$$
S^{2}=P^{2}+Q^{2}
$$

REAL AND REACTIVE POWER

If a circuit has resistive and reactive parts, the resultant power has 2 parts:

- The first is dissipated in the resistive element. This is the real power, P
- The second is stored and returned by the reactive element. This is the reactive power, \mathbf{Q}, which has units of volt amperes reactive or var

RELATIONSHIP BETWEEN V, I AND P IN A RESISTOR

POWER TRIANGLE

The Power Triangle:

POWER FACTOR

- Power Factor is the ratio of Active Power to Total Power:

- Power Factor is a measure of efficiency (Output/Input)

RECAP....

...THANK YOU

