Mass moments of inertia:

The moments of inertia of solid figures are refined as "mass moment of inertia". It is denoted by ($I_{\max }$) or simply I_{M}.

Problem 21: A thin steel plate 4 mm thick is cut and bent as shown in fig. If the density of the Steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$, determine the mass moment of inertia of the plate with respect to the centroidal axes $x x$ and $y y$.

Solution:

Location of centre of gravity Divide the plate into three components
Due to symmetry, $\bar{x}=8 \mathrm{~cm}$

Component 1: Rectangular plate,

$$
\begin{gathered}
\left(\frac{16}{100} \times \frac{20}{100} \times \frac{40}{100}\right) m \\
\text { mass, } m_{1}=\rho t b d \\
=7850 \times \frac{4}{1000} \times \frac{16}{100} \times \frac{20}{100}=1.005 \mathrm{~kg} \\
y_{1}=\frac{10}{100}=0.1 \mathrm{~m}
\end{gathered}
$$

Component 2: Semi-circular plate, $\frac{8}{100} m$ radius

$$
\text { mass, } m_{2}=\rho t\left(\frac{\pi r^{2}}{2}\right)
$$

$$
\begin{gathered}
=7850 \times \frac{4}{1000} \times \frac{\pi}{2} \times 0.08^{2}=0.3157 \mathrm{~kg} \\
y_{2}=0.2+\frac{4 \times 0.08}{3 \pi}=0.234 \mathrm{~m}
\end{gathered}
$$

Component3: Circular hole, 0.05 m radius

$$
\begin{gathered}
\text { mass, } m_{3}=\rho t \pi r^{2} \\
=7850 \times \frac{4}{1000} \times \pi \times 0.05^{2} \\
=0.2466 \mathrm{~kg} \\
y_{3}=0.1 \mathrm{~m} \\
\bar{y}=\frac{m_{1} y_{1}+m_{2} y_{2}-m_{3} y_{3}}{m_{1}+m_{2}-m_{3}}=0.14 m
\end{gathered}
$$

Mass moment of inertia about $x x$ axis

$$
\left(I_{X X}\right)_{\text {mass }}=\left(I_{1}\right)_{\text {mass }}+\left(I_{2}\right)_{\text {mass }}-\left(I_{3}\right)_{\text {mass }}
$$

From parallel axis theorem,

$$
\begin{gathered}
\left(I_{1}\right)_{\text {mass }}=\left(I_{G 1}\right)_{\text {mass }}+m_{1} \bar{h}_{1}^{2} \\
=\frac{m_{1} d_{1}^{2}}{12}+m_{1}\left(\bar{y}-y_{1}\right)^{2} \\
=\left(\frac{1.005 \times(0.2)^{2}}{12}\right)+\left(1.005 \times(0.14-0.1)^{2}\right) \\
=4.958 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\left(I_{2}\right)_{\text {mass }}=\left(I_{G 2}\right)_{\text {mass }}+m_{2} \bar{h}_{2}^{2} \\
=0.2176 m_{2} r^{2}+m_{2}\left(\bar{y}-y_{2}\right)^{2} \\
=3.229 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\left(I_{3}\right)_{\text {mass }}=\left(I_{G 3}\right)_{\text {mass }}+m_{3} \bar{h}_{3}^{2} \\
=\frac{m_{3} r^{2}}{4}+m_{3}\left(\bar{y}-y_{3}\right)^{2} \\
=5.486 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
\therefore\left(I_{X X}\right)_{\text {mass }}=7.6384 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{gathered}
$$

Mass moment of inertia about YY axis

$$
\begin{aligned}
\left(I_{Y Y}\right)_{\text {mass }} & =\left(I_{1}\right)_{\text {mass }}+\left(I_{2}\right)_{\text {mass }}-\left(I_{3}\right)_{\text {mass }} \\
& =\frac{m_{1} b^{2}}{12}+\frac{m_{2} r^{2}}{4}-\frac{m_{3} r^{2}}{4} \\
& =2.495 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

