
Bending of beams

A beam is defined as a rod (or) bar of uniform cross section whose length is 

very much greater than its other dimensions, such as breadth and thickness.

It is commonly used in the construction of bridges to support roofs of the 

buildings etc. Since the length of the beam is much greater than its other dimensions 

the shearing stresses are very small.

Assumptions:

 The length of the beam should be large compared to other dimensions.

 The applied load should be large compared to the weight of the beam.

 The cross section of the beam remains constant and hence the geometrical 

moment of inertia also remains constant.

 The shearing stresses are negligible.

Consider a beam ABCD, which is made up of a large number of thin plane layers are 

place done above the other. One end of the beam AD is fixed in the rigid support and a

Load is applied in the other end BC.

Taking the longitudinal section ABCD of the bent beam, the layers in the upper

half are elongated while those in the lower half are compressed.



In the middle there is a layer (MN) which is not elongated or compressed due 

to bending of the beam. This layer is called the ‘neutral surface’ and the line (MN)at 

which the neutral layer intersects the plane of bending is called the ‘neutral axis’.

The layers below MN are compressed and those above MN are elongated and 

there will be such pairs of layers one above MN and one below MN experiencing 

same forces of elongation and compression due to bending and each pair forms a 

couple.

The resultant moments of all these internal couples are called the internal bending 

moment and in the equilibrium condition, this is equal to the external bending moment

INTERNALBENDINGMOMENTOFTHEBEAM

When a beam bent, the restoring couple arises. This couple balances the 

external couple due to external load is called internal bending moment of the beam.

At equilibrium,

Restoring couple=Bending couple

A beam may be assumed to consist of a number of parallel longitudinal 

metallic fibers placed one over the other and are called as filaments. Let the beam be 

subjected to deforming forces at its ends, due to which it bends. Let us consider a 

filament AB at the center of the beam. It is found that the filaments (layers) lying above

AB gets elongated, while the filaments lying below AB gets compressed.

Bending of beam.



      

Therefore the filament i.e. layer AB which remains unaltered taken as the 

reference axis called as Neutral axis and the plane is called as neutral plane. Further, the

deformation of any filament can be measured with reference to the neutral axis. The 

moment of couple due to elastic reactions (restoring couple) which balances the 

bending couple due to applied load is called the bending moment. Let us consider a 

beam under the action of deforming forces. The beam bends into a circular arc.

Let PQ be the neutral axis of the beam and P’ Q’ be another filament at distance y from 

PQ. If R is the radius of curvature of the neutral axis and𝜃is the angle subtended by it at 

its centre of curvature ‘C’.

Then we can write original length PQ=Radius x Angle

= R𝜃...................................................................(1)

If Rx
Is the radius of curvature of the filament P’Q’.

P’Q’=(Rx)𝜃...............................................................(2)

Extension Produced in the filament P’Q’ due to bending=P’Q’- PQ

=(Rx)𝜃-R𝜃
= x𝜃......................................(3)
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Longitudinal strain=
Change in length


x

x

Original      length R R
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InternalbendingmomentofthebeamYI(4)

R g

      

The Young’s modulus of the filament P’Q’

Y= longitudinal stress

longitudinal strain

Longitudinal stress on the filament P’Q’ =Ylongitudinal strain

=Y
x

R

IfAistheareaofcross-sectionofthefilament,thenthetensileforceonthefilament.

=Longitudinal stressarea

=Y
x
A

R

We know, moment of longitudinal force about the neutral axis=tensile force distance

Y
x
Ax

Y

Ax2

R R

Moment of all the forces about the neutral axis=
Y
Ax2

Y
I

R Rg

I isthegeometricalmomentofinertiaanditisrepresentedasAK2

WhereAistheareaofthecross-sectionand Kisradiusofgyration. In 

equilibrium,

Bendingmomentofthebeam=Momentofforce

SPECIALCASES

Rectangularcrosssection

Ifbanddarethebreadthandthicknessofthebeam,then

2 bd3

Abdand 2
d2

12

IgAK 
12

UsingthevalueofIg

bd3

12
inequation(4)
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bd3Y

Internalbendingmomentoftherectangular beam
12R …………..(5)
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Externalbendingmoment =Internalbendingmoment

Internalbendingmomentofthecircularbeam
r4Y
4R ……………(6)

      

Circularcrosssection

Ifrbetheradiusofthebeam,then Ar2 and 2
r2

4

IgAK 
r4

4

Usingthevalue r4

Ig
4

inequation(4)

DEPRESSIONOFACANTILEVER

DEFINITION

A light beamclamped horizontally at one end and loaded with a weight W = Mg 

at the free end is called a cantilever.

Inequilibrium,

THEORY

Let us considerabeamfixedatone endand loadedat itsother freeendas shown in 

fig1.7.2.2.Let AB is the neutral axis of a cantilever (a beam or rod) of length ‘l’ is fixed 

at the end A and loaded at the free end B by a weight W. Due to load applied the 

cantilever is depressed to B’.

LetBB’representstheverticaldepressionatthefreeend.
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Duetotheloadappliedatthefreeend,acoupleiscreatedbetweenthetwoforces.(i.e)

(i) Force(load‘W’)appliedatthefreeendtowardsdownwarddirectionand
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(ii) Reaction(R)actinginthe upwarddirectionatthesupportingend.

This external bending couple tends to bend the beam in the clockwise direction. 

But, since one end of the beam is fixed, the beam cannot rotate. Therefore the external 

bending couple must be balanced by another equal and opposite couple, created due to 

the elastic nature of the body called as internal bending moment.

Consider the sectionof the cantilever P at a distance ‘x’ fromthe fixed end A.Q is 

another point at a distance dx from P i.e., PQ = dx. It is at a distance (l-x) from the 

loaded end B’. Considering the equilibrium of the portion PB’, there is a force of 

reaction W of P. Let O be the centre of curvature and R be the radius of curvature.

Fig1.7.2.2.Depressionofacantilever.

•Theexternalbendingmoment=WPB’=W(l-x).................................................(1)

•Internalbendingmomentofthecantilever

Y

I

R
g

…………..(2)
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R-RadiusofthecurvatureoftheneutralaxisatP.



      

WhereY–Young’smodulusofthecantilever.

Ig-Geometricalmomentofinertiaofitscross-section.

In the equilibrium position,

External bending moment=Internal bending moment

W(lx)
Y

I

R
g

R
YIg ……………(3)

W(l x)

Let Q be another point on the bent cantilever at small distance ‘dx’from P. Since 

P and Q are very near, we can assume that the radius of curvature R is practically the 

same.

The tangents are drawn at P and Q meeting the vertical line BB’ at C and D. Let d𝜃
be the angle between the tangents at P and Q.

Sin dd
dx

R

R
dx

d
………………(4)

Substituting the value of R from(3) in(4),we have

dx
d YIg

W(lx)

d
W(l x)dx

YIg

If‘dy’ is the depression due to the curvature at PQ

dy(lx)d

………………..(5)

……………….(6)

Substituting value of d𝜃
dy (lx)

W(lx)
dx
YIg

W(l x)2

dy dx
YIg

……………….(7)
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R-RadiusofthecurvatureoftheneutralaxisatP.      

To find the total depression at the free end of the cantilever equation (7) has to be integrated 

from 0 to l .
l

dyW
0

(lx)2

dx
YIg
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hedepressionpr

2 r

g

y
Wl3
3YIg

Depressiony
4Mgl3
Ybd3 ………………(9)

Depressiony
4Mgl3
3Yr4 …………………(10)

      

y
W

YIg

l

(lx)2dx
o

W

YIg

l

(l2x22lx)dx
o

W 2 x3

x2
ly 

[l YIg

x

2l3 2
]0

y
W

YIg
[l3

l3

3
l3]

…………………..(8)

Equation(8)givest oducedbythecantileveratthefreeend.

SPECIALCASES

Rectangularcrosssection

Ifbanddarethebreadthandthicknessofthebeam,then
Abdand 2

d2

12

Substitutingthevaluesof
I AK2I 

bd3

12
andWMginequation(8)

Circularcrosssection

Ifrbetheradiusofthebeam,then Ar2
2

andK 

Substitutingthevaluesof
Ig

4

2
r

4

andWMginequation (8)
4

EXPERIMENTAL DETERMINATION OF YOUNG’S MODULUS BY

CANTILEVER DEPRESSION METHOD

CONSTRUCTION
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One end of the beam is rigidly clamped at one end to the edge of the table 

using G-clamp. A tall pin P is fixed vertically to the free end of the bar. A loop 

ofcottonstringorahookisattachedtothisendofthebarandaweighthangeris
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suspended from it. A travelling microscope is focused on the tip of the pin as shown in 

fig.

Fig1.7.2.3Experientalverificationofacantilever.

PROCEDURE

A dead load without any slotted weights is attached to the hook. The microscope 

is adjusted such that the horizontal cross wire coincides with the tip of the image of the 

pinand the readingonthe verticalscale is taken. Loads are added to the hanger insteps of 

50g and every time, the readings are noted on the vertical scale. A travelling 

microscope is focused on the tip of the pin as shown in fig. These observations are also 

repeated while unloading in the same. Steps and the readings are tabulated. The mean 

depression ‘y’ for a load ‘M’ kg is found fromthe tabulated readings.

Theobservationsaretabulatedasfollows.

Graphicalmethod

A graph is drawn between the load (M) along X-axis and elevation (y) along Y- 

axis. It is found to be a straight line as shown in fig. The slope of the straight line gives 

the value of (y/M).



y

      

Load

103kg

Microscopereadings

depression

(y)for100g

102m

Mean

(M/y)

Kgm-1

Loading Unloading Mean

102m

MSRc

m

VSR

cm

TR

cm

MSRc

m

VSR

Cm

TR

Cm

W

W+50

W+100

W+150

W+200

HenceYoung’smodulusofthecantilevercanbecalculatedas
4gl3M

Y  
bd3
 
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