Young's Modulus(Y):

It is defined as the ratio between the longitudinal stress to the longitudinal strain, within the elastic limits.

$$
\text { Young's Modulus }(\mathrm{Y})=\frac{\text { longitudinal stress }}{\text { longitudinal strain }}
$$

Uniform Bending

Consider a beam supported by two knife edges A and B. Length between A and B is ' 1 '. Let equal weights (W), be added to either end of the beam C and D .

Let the distance CA and $\mathrm{BD}=\mathrm{a}$. Due to load applied the elevation ' x ' produced from F to E . Let W be the reaction produced at the points A and B which acts vertically upwards.

From the fig
The external bending moment about P , written as

$$
\mathrm{Mp}=\mathrm{Wa}
$$

We know the internal bending moment $=\frac{Y I_{g}}{R}$
On comparing (1) and (2)

$$
\mathrm{Wa}=\frac{\mathrm{YI}_{\mathrm{g}}}{\mathrm{R}}
$$

Here it is found that the elevation ' x ' forms an arc of the circle of radius R
From \triangle AFO

$$
\mathrm{OA}^{2}=\mathrm{AF}^{2}+\mathrm{FO}^{2}
$$

Since OF $=\mathrm{FE}$, therefore we can write $\mathrm{OA}^{2}=\mathrm{AF}^{2}+\mathrm{FE}^{2}$
(or) $\quad \mathrm{AF}^{2}=\mathrm{OA}^{2}-\mathrm{FE}^{2}$

$$
\mathrm{AF}^{2}=\mathrm{FE}\left[\frac{\mathrm{OA}^{2}}{\mathrm{FE}}-\mathrm{FE}\right]
$$

Here, $\mathrm{AF}=\frac{l}{2}, \mathrm{FE}=x=\frac{R}{2} ; \mathrm{OA}=\mathrm{R}$

$$
\begin{aligned}
& \left(\frac{\mathrm{l}}{2}\right)^{2}=x\left[\frac{\mathrm{R}^{2}}{\mathrm{R} / 2}-x\right] \\
& \left(\frac{\mathrm{l}^{2}}{4}\right)=2 x \mathrm{R}-x^{2}
\end{aligned}
$$

If elevation x is small

$$
\begin{aligned}
& \left(\frac{\mathrm{l}^{2}}{4}\right)=2 x \mathrm{R} \\
& x=\frac{\mathrm{l}^{2}}{8 \mathrm{R}} \quad \text { (or) } \quad \mathrm{R}=\frac{\mathrm{l}^{2}}{8 x} \\
& \text { (or) } \mathrm{Wa}=\frac{\mathrm{YI}_{\mathrm{g}}}{\mathrm{l}^{2} / 8 x} \quad \text { (or) } \quad \mathrm{Wa}=\frac{8 \mathrm{YI}_{\mathrm{g}} x}{\mathrm{l}^{2}}
\end{aligned}
$$

On Rearranging
The elevation of point ' E ' above ' A ' is $x=\frac{\mathrm{Wal}^{2}}{8 \mathrm{YI}_{\mathrm{g}}}$

