

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS

19MCB303 – SENSORS AND SIGNAL PROCESSING

UNIT 1 – SCIENCE OF MEASUREMENT

STATIC AND DYNAMIC CHARACTERISTICS

Mrs. P.KALAISELVI M.E.,(Ph.D.,)

ASSISTANT PROFESSOR,

DEPARTMENT OF MECHATRONICS,

SNSCT, Coimbatore.

UNIT-I

SCIENCE OF MEASUREMENT

Units and Standards- Calibration techniques -Errors in Measurements-Generalized Measurement System-Static and dynamic characteristics of transducers- Generalized Performance of Zero Order and First Order Systems -**Response of transducers to different time varying inputs - Classification of** transducers-Introduction to second order systems.

9

Characteristics of Transducer

The various static characteristics are:	The	e vai
i) Accuracy	i)	Spe
ii) Precision	ii)	Me
iii) Sensitivity	iii)	Fid
iv) Linearity	i∨)	Dy
v) Reproducibility		
vi) Repeatability		
vii) Resolution		
viii) Threshold		
ix) Drift		
x) Stability		
xi) Tolerance		
xii) Range or span		

rious **dynamic characteristics** are: eed of response easuring lag delity namic error

Generalized Performance of Zero Order System

$$y(t) = k \cdot x(t) \Rightarrow \frac{Y(s)}{X(s)} = k$$

Example of a zero-order sensor

- A potentiometer used to measure linear and rotary displacements
 - This model would not work for fast-varying displacements •

Example

Generalized Performance of First Order System

$$a_{1} \frac{dy}{dt} + a_{0}y(t) = x(t) \Rightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_{1}s}$$

K $=\frac{1}{\tau s+1}$ $+a_0$

 $\frac{\partial_{F}(s)}{Cs+1} \Rightarrow \theta(t) = \theta_{F}(1-e^{-t/RC})$

Response of Transducer with time varying input

Step response

Ramp response

Frequency response

- Corner frequency $\omega_c = 1/\tau$
- Bandwidth

Introduction to Second Order

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y(t) = x(t) \Rightarrow \frac{Y(s)}{X(s)} = \frac{1}{a_2 s^2 + a_1 s + a_0}$$

We can express this second-order transfer function as

$$\frac{Y(s)}{X(s)} = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with $k = \frac{1}{a_0}, \ \zeta = \frac{a_1}{2\sqrt{a_0a_1}}, \ \omega_n = \sqrt{\frac{a_0}{a_2}}$

Static and Dynamic Characteristics/16MC310 - SENSORS AND SIGNAL PROCESSING P.KALAISELVI, AP/MCT/SNSCT

Static and Dynamic Characteristics/16MC310 - SENSORS AND SIGNAL PROCESSING P.KALAISELVI, AP/MCT/SNSCT

