

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHATRONICS

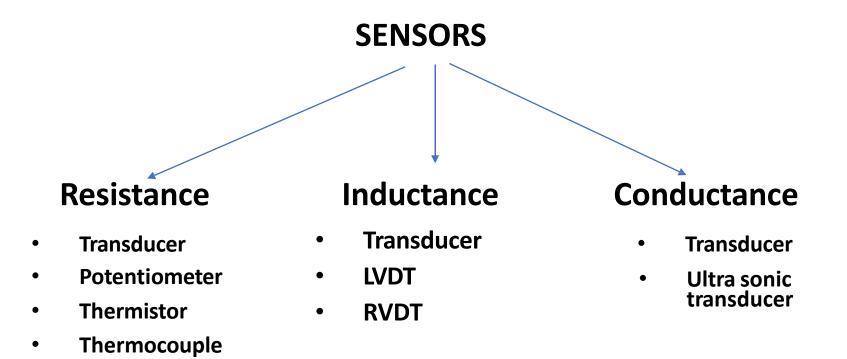
19MCB303 – SENSORS AND SIGNAL PROCESSING

UNIT 2 – ELECTROMECHANICAL SENSOR

Thermocouple

Mrs. P.KALAISELVI M.E., (Ph.D.,)

ASSISTANT PROFESSOR,


DEPARTMENT OF MECHATRONICS,

SNSCT, Coimbatore.

1

UNIT-2 ELECTRO MECHANICAL SENSOR

• Strain gauge

UNIT-2 Transducer

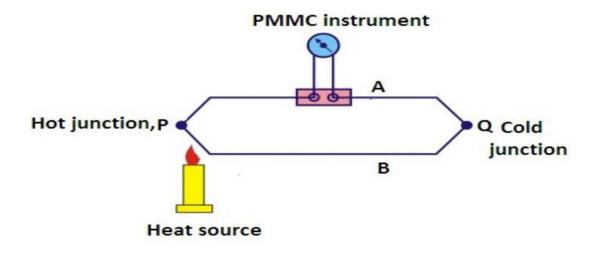
- A resistive transducer is an electronic device that is capable of measuring various physical quantities like temperature, pressure, vibration, force, etc.
- These physical quantities are extremely difficult to measure as they can change easily.
- The measurement of the physical quantity is quite difficult. The resistive transducer converts the physical quantities into variable resistance which is easily measured by the meters.
- The process of variation is widely used in the industrial applications.

UNIT-2 Transducer

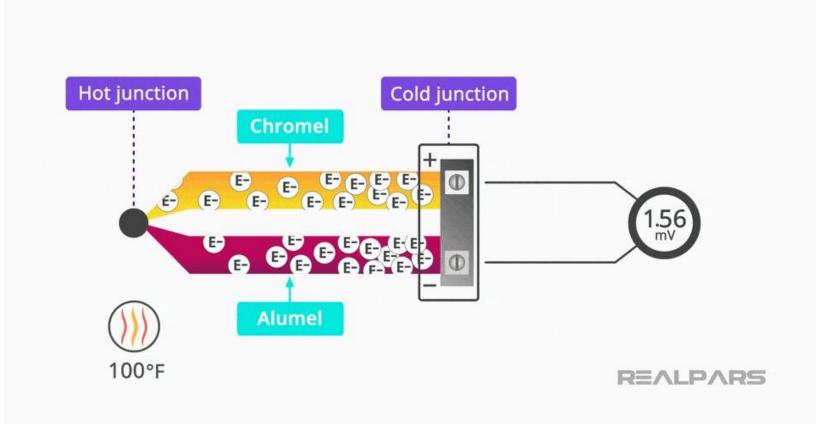
- The resistive transducer can work both as the primary as well as the secondary transducer.
- The primary transducer changes the physical quantities into a mechanical signal, and secondary transducer directly transforms it into an electrical signal

Advantages

- The resistive transducer gives the fast response.
- It is available in various sizes and having a high range of resistance.


THERMOCOUPLE

- Thermocouples are the temperature sensors which are extensively used for the measurement of the temperature variations.
- As they convert a non-electrical quantity (temperature) into voltage (electrical quantity) so they are transducers also.
- Since the do not require any external power source to operate, so they are active transducers.



Thermocouple Working Principle:

- The thermocouple working principle is based on the Seeback Effect.
- This effect states that when a closed circuit is formed by jointing two dissimilar metals at two junctions, and junctions are maintained at different temperatures then an electromotive force (e.m.f.) is induced in this closed circuit.

WORKING:

TYPES OF THERMOCOUPLES:

- The metal alloys chosen as thermocouple positive and negative leg wires define the type of thermocouple.
- Selection of the proper thermocouple type for a particular application is determined by temperature expectations and by the environment in which the sensor will be placed.

Thermocouple Types			
Туре	Conductor Combination	Temperature Range	
		۴	°C
В	Platinum 30% Rhodium / Platinum 6% Rhodium	2500 to 3100	1370 to 1700
E	Nickel-chromium / Constantan	32 to 1600	0 to 870
J	Iron / Constantan	32 to 1400	0 to 760
к	Nickel-chromium / Nickel-aluminium	32 to 2300	0 to 1260
N	Nicrosil / Nisil	32 to 2300	0 to 1260
R	Platinum 13% Rhodium / Platinum	1600 to 2640	870 to 1450
s	Platinum 10% Rhodium / Platinum	1800 to 2640	980 to 1450
т	Copper / Constantan	-75 to +700	-59 to +370

Advantages:

- The thermocouple is less expensive.
- It has wide temperature ranges.
- The temperature range is 270 to 2700 degree Celsius.
- It has good accuracy.
- It has high speed of response.

Disadvantages:

- As output voltage is very small, it needs amplification.
- The cold junction and lead compensation is essential.
- It shows non linearity.
- They have very low accuracy. So they cannot be used for very high precision measurement.

APPLICATIONS:

- Temperature sensors in thermostats in offices, homes, offices & businesses.
- In industries for monitoring temperatures of metals in iron, aluminum, and metal.
- In the food industry for cryogenic and Lowtemperature applications. Thermocouples are used as heat pumps for performing thermoelectric cooling.
- These are used to test temperature in chemical plants, petroleum plants.
- In gas machines for detecting the pilot flame.

