
SNS COLLEGE OF

TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

M.POORNIMA DEVI,AP/AIML

19AMB303-FULL STACK AI

Searching for solutions

3.3 Searching for solutions

Finding out a solution is done by

 searching through the state space

All problems are transformed

 as a search tree

 generated by the initial state and

successor function

Search tree
Initial state

 The root of the search tree is a search node

Expanding

 applying successor function to the current state

 thereby generating a new set of states

leaf nodes

 the states having no successors

Fringe : Set of search nodes that have not been
expanded yet.

Refer to next figure

Tree search example

Tree search example

Search tree
The essence of searching

 in case the first choice is not correct

 choosing one option and keep others for later
inspection

Hence we have the search strategy

 which determines the choice of which state to
expand

 good choice  fewer work  faster

Important:

 state space ≠ search tree

Search tree

A node is having five components:

 STATE: which state it is in the state space

 PARENT-NODE: from which node it is generated

 ACTION: which action applied to its parent-node

to generate it

 PATH-COST: the cost, g(n), from initial state to

the node n itself

 DEPTH: number of steps along the path from the

initial state

Search tree

Informal Description of Genearl search Algorithm

Search tree

Measuring problem-solving performance

The evaluation of a search strategy

 Completeness:

 is the strategy guaranteed to find a solution when
there is one?

 Optimality:

 does the strategy find the highest-quality solution
when there are several different solutions?

 Time complexity:
 how long does it take to find a solution?

 Space complexity:
 how much memory is needed to perform the search?

Measuring problem-solving performance

In AI, complexity is expressed in

 b, branching factor, maximum number of
successors of any node

 d, the depth of the shallowest goal node.

(depth of the least-cost solution)

 m, the maximum length of any path in the state
space

Time and Space is measured in

 number of nodes generated during the search

 maximum number of nodes stored in memory

For effectiveness of a search algorithm

 we can just consider the total cost

 The total cost = path cost (g) of the solution
found + search cost
 search cost = time necessary to find the solution

Tradeoff:

 (long time, optimal solution with least g)

 vs. (shorter time, solution with slightly larger
path cost g)

Measuring problem-solving performance

3.4 Uninformed search strategies

Uninformed search

 no information about the number of steps

 or the path cost from the current state to
the goal

 search the state space blindly

Informed search, or heuristic search

 a cleverer strategy that searches toward
the goal,

 based on the information from the current
state so far

Uninformed search strategies

Breadth-first search

 Uniform cost search

Depth-first search

 Depth-limited search

 Iterative deepening search

Bidirectional search

Breadth-first search

The root node is expanded first (FIFO)

All the nodes generated by the root

node are then expanded

And then their successors and so on

Breadth-First Strategy

2 3

4

New nodes are inserted at the end of FRINGE

1

5 6 7

FRINGE = (1)

Breadth-First Strategy

FRINGE = (2, 3)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-First Strategy

FRINGE = (3, 4, 5)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-First Strategy

FRINGE = (4, 5, 6, 7)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-first search (Analysis)

Breadth-first search

 Complete – find the solution eventually

Optimal, if step cost is 1

The disadvantage

 if the branching factor of a node is large,

 for even small instances (e.g., chess)

 the space complexity and the time complexity

are enormous

Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd = b(bd-1) = O(bd+1)

Space? O(bd+1) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Breadth-first search (Analysis)
assuming 10000 nodes can be processed per second, each with

1000 bytes of storage

THANKYOU

SNS COLLEGE OF

TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

M.POORNIMA DEVI,AP/AIML

19AMB303-FULL STACK AI

Uniform cost search

Breadth-first finds the shallowest goal state

 but not necessarily be the least-cost solution

 work only if all step costs are equal

Uniform cost search

 modifies breadth-first strategy

 by always expanding the lowest-cost node

 The lowest-cost node is measured by the path

cost g(n)

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete? Yes, if step cost ≥ ε

Time? numbr of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε)) where C* is the cost of the
optimal solution

Space? Number of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε))
Optimal? Yes – nodes expanded in increasing order of
g(n)

let

C* be the cost of optimal solution.

ε is possitive constant (every action cost)

Depth-first search

Always expands one of the nodes at the

deepest level of the tree

Only when the search hits a dead end

 goes back and expands nodes at shallower levels

 Dead end  leaf nodes but not the goal

Backtracking search

 only one successor is generated on expansion

 rather than all successors

 fewer memory

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search
S

A D

B D A E

E B B F

G C G

19 19 17

D F B F C E A C G

14 17 15 15 13

F

G 25

C E

11

Depth-first search (Analysis)

Not complete

 because a path may be infinite or looping

 then the path will never fail and go back try

another option

Not optimal

 it doesn't guarantee the best solution

It overcomes

 the time and space complexities

Properties of depth-first search

Complete? No: fails in infinite-depth spaces,
spaces with loops
 Modify to avoid repeated states along path
  complete in finite spaces

Time? O(bm): terrible if m is much larger than
d
 but if solutions are dense, may be much faster

than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No

Depth-Limited Strategy

Depth-first with depth cutoff k (maximal
depth below which nodes are not
expanded)

Three possible outcomes:

 Solution

 Failure (no solution)

 Cutoff (no solution within cutoff)

Depth-limited search

It is depth-first search

 with a predefined maximum depth

 However, it is usually not easy to define
the suitable maximum depth

 too small  no solution can be found

 too large  the same problems are
suffered from

Anyway the search is

 complete

 but still not optimal

Depth-limited search
S

B E

A D

D A

E B B F

G C G

19 19 17

D F B F C E A C G

14 17 15 15 13

F

G 25

C E

11

depth = 3

3

6

Iterative deepening search

No choosing of the best depth limit

It tries all possible depth limits:

 first 0, then 1, 2, and so on

 combines the benefits of depth-first and

breadth-first search

Iterative deepening search

Iterative deepening search

(Analysis)
optimal

complete

Time and space complexities

 reasonable

suitable for the problem

 having a large search space

 and the depth of the solution is not known

Properties of iterative deepening

search

Complete? Yes

Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd

= O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1

Bidirectional search

Run two simultaneous searches

 one forward from the initial state another
backward from the goal

 stop when the two searches meet

However, computing backward is difficult

 A huge amount of goal states

 at the goal state, which actions are used to
compute it?

 can the actions be reversible to computer its
predecessors?

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity = O(bd/2) << O(bd)

BidirectionSal search

D F B F C E A C G

14 17 15 15 13

G C G

19 19 17

F

G 25

A D

B D A E

C E E B B F

11

Forward

Backwards

THANKYOU

