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Searching for solutions



3.3 Searching for solutions

Finding out a solution is done by

 searching through the state space

All problems are transformed

 as a search tree

 generated by the initial state and 

successor function



Search tree
Initial state

 The root of the search tree is a search node

Expanding

 applying successor function to the current state

 thereby generating a new set of states

leaf nodes

 the states having no successors

Fringe : Set of search nodes that have not been 
expanded yet.

Refer to next figure



Tree search example



Tree search example



Search tree
The essence of searching

 in case the first choice is not correct

 choosing one option and keep others for later 
inspection

Hence we have the search strategy

 which determines the choice of which state to 
expand

 good choice  fewer work  faster

Important:

 state space ≠ search tree



Search tree

A node is having five components:

 STATE: which state it is in the state space

 PARENT-NODE: from which node it is generated

 ACTION: which action applied to its parent-node 

to generate it

 PATH-COST: the cost, g(n), from initial state to 

the node n itself

 DEPTH: number of steps along the path from the 

initial state



Search tree

Informal Description of Genearl search Algorithm



Search tree



Measuring problem-solving performance

The evaluation of a search strategy

 Completeness:

 is the strategy guaranteed to find a solution when 
there is one?

 Optimality:

 does the strategy find the highest-quality solution 
when there are several different solutions?

 Time complexity:
 how long does it take to find a solution?

 Space complexity:
 how much memory is needed to perform the search?



Measuring problem-solving performance

In AI, complexity is expressed in

 b, branching factor, maximum number of 
successors of any node

 d, the depth of the shallowest goal node.

(depth of the least-cost solution)

 m, the maximum length of any path in the state 
space

Time and Space is measured in

 number of nodes generated during the search

 maximum number of nodes stored in memory



For effectiveness of a search algorithm

 we can just consider the total cost

 The total cost = path cost (g) of the solution 
found + search cost
 search cost = time necessary to find the solution

Tradeoff:

 (long time, optimal solution with least g)

 vs. (shorter time, solution with slightly larger 
path cost g)

Measuring problem-solving performance



3.4 Uninformed search strategies

Uninformed search

 no information about the number of steps

 or the path cost from the current state to 
the goal

 search the state space blindly

Informed search, or heuristic search

 a cleverer strategy that searches toward 
the goal,

 based on the information from the current 
state so far



Uninformed search strategies

Breadth-first search

 Uniform cost search

Depth-first search

 Depth-limited search

 Iterative deepening search

Bidirectional search



Breadth-first search

The root node is expanded first (FIFO)

All the nodes generated by the root 

node are then expanded

And then their successors and so on



Breadth-First Strategy
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Breadth-First Strategy

FRINGE = (2, 3)
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Breadth-First Strategy

FRINGE = (3, 4, 5)
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Breadth-First Strategy

FRINGE = (4, 5, 6, 7)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7



Breadth-first search (Analysis)

Breadth-first search

 Complete – find the solution eventually

Optimal, if step cost is 1 

The disadvantage

 if the branching factor of a node is large,

 for even small instances (e.g., chess)

 the space complexity and the time complexity

are enormous



Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd = b(bd-1) = O(bd+1) 

Space? O(bd+1) (keeps every node in memory) 

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)



Breadth-first search (Analysis)
assuming 10000 nodes can be processed per second, each with 

1000 bytes of storage
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Uniform cost search

Breadth-first finds the shallowest goal state

 but not necessarily be the least-cost solution

 work only if all step costs are equal

Uniform cost search

 modifies breadth-first strategy

 by always expanding the lowest-cost node

 The lowest-cost node is measured by the path 

cost g(n)



Uniform-cost search

Expand least-cost unexpanded node 

Implementation:

fringe = queue ordered by path cost 

Equivalent to breadth-first if step costs all equal 

Complete? Yes, if step cost ≥ ε

Time? numbr of nodes with g ≤ cost of optimal 
solution, O(bceiling(C*/ ε)) where C* is the cost of the 
optimal solution

Space? Number of nodes with g ≤ cost of optimal 
solution, O(bceiling(C*/ ε))
Optimal? Yes – nodes expanded in increasing order of
g(n)

let

C* be the cost of optimal solution.

ε is possitive constant (every action cost)



Depth-first search

Always expands one of the nodes at the

deepest level of the tree

Only when the search hits a dead end

 goes back and expands nodes at shallower levels

 Dead end  leaf nodes but not the goal

Backtracking search

 only one successor is generated on expansion

 rather than all successors

 fewer memory



Depth-first search
Expand deepest unexpanded node 

Implementation:

 fringe = LIFO queue, i.e., put successors at front
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Depth-first search

Expand deepest unexpanded node 

Implementation:

 fringe = LIFO queue, i.e., put successors at front





Depth-first search
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Depth-first search (Analysis)

Not complete

 because a path may be infinite or looping

 then the path will never fail and go back try 

another option

Not optimal

 it doesn't guarantee the best solution

It overcomes

 the time and space complexities



Properties of depth-first search

Complete? No: fails in infinite-depth spaces, 
spaces with loops
 Modify to avoid repeated states along path
  complete in finite spaces

Time? O(bm): terrible if m is much larger than
d
 but if solutions are dense, may be much faster 

than breadth-first

Space? O(bm), i.e., linear space! 

Optimal? No



Depth-Limited Strategy

Depth-first with depth cutoff k (maximal 
depth below which nodes are not 
expanded)

Three possible outcomes:

 Solution

 Failure (no solution)

 Cutoff (no solution within cutoff)



Depth-limited search

It is depth-first search

 with a predefined maximum depth

 However, it is usually not easy to define 
the suitable maximum depth

 too small  no solution can be found

 too large  the same problems are 
suffered from

Anyway the search is

 complete

 but still not optimal



Depth-limited search
S

B E

A D

D A

E B B F

G C G

19 19 17

D F B F C E A C G 

14 17 15 15 13

F

G 25

C E

11

depth = 3

3

6



Iterative deepening search

No choosing of the best depth limit 

It tries all possible depth limits:

 first 0, then 1, 2, and so on

 combines the benefits of depth-first and 

breadth-first search



Iterative deepening search



Iterative deepening search 

(Analysis)
optimal 

complete

Time and space complexities

 reasonable

suitable for the problem

 having a large search space

 and the depth of the solution is not known



Properties of iterative deepening 

search

Complete? Yes

Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd

= O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1



Bidirectional search

Run two simultaneous searches

 one forward from the initial state another 
backward from the goal

 stop when the two searches meet

However, computing backward is difficult

 A huge amount of goal states

 at the goal state, which actions are used to 
compute it?

 can the actions be reversible to computer its 
predecessors?



Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity = O(bd/2) << O(bd)



BidirectionSal search
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