
SNS COLLEGE OF

TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

M.POORNIMA DEVI,AP/AIML

19AMB303-FULL STACK AI

Searching for solutions

3.3 Searching for solutions

Finding out a solution is done by

 searching through the state space

All problems are transformed

 as a search tree

 generated by the initial state and

successor function

Search tree
Initial state

 The root of the search tree is a search node

Expanding

 applying successor function to the current state

 thereby generating a new set of states

leaf nodes

 the states having no successors

Fringe : Set of search nodes that have not been
expanded yet.

Refer to next figure

Tree search example

Tree search example

Search tree
The essence of searching

 in case the first choice is not correct

 choosing one option and keep others for later
inspection

Hence we have the search strategy

 which determines the choice of which state to
expand

 good choice fewer work faster

Important:

 state space ≠ search tree

Search tree

A node is having five components:

 STATE: which state it is in the state space

 PARENT-NODE: from which node it is generated

 ACTION: which action applied to its parent-node

to generate it

 PATH-COST: the cost, g(n), from initial state to

the node n itself

 DEPTH: number of steps along the path from the

initial state

Search tree

Informal Description of Genearl search Algorithm

Search tree

Measuring problem-solving performance

The evaluation of a search strategy

 Completeness:

 is the strategy guaranteed to find a solution when
there is one?

 Optimality:

 does the strategy find the highest-quality solution
when there are several different solutions?

 Time complexity:
 how long does it take to find a solution?

 Space complexity:
 how much memory is needed to perform the search?

Measuring problem-solving performance

In AI, complexity is expressed in

 b, branching factor, maximum number of
successors of any node

 d, the depth of the shallowest goal node.

(depth of the least-cost solution)

 m, the maximum length of any path in the state
space

Time and Space is measured in

 number of nodes generated during the search

 maximum number of nodes stored in memory

For effectiveness of a search algorithm

 we can just consider the total cost

 The total cost = path cost (g) of the solution
found + search cost
 search cost = time necessary to find the solution

Tradeoff:

 (long time, optimal solution with least g)

 vs. (shorter time, solution with slightly larger
path cost g)

Measuring problem-solving performance

3.4 Uninformed search strategies

Uninformed search

 no information about the number of steps

 or the path cost from the current state to
the goal

 search the state space blindly

Informed search, or heuristic search

 a cleverer strategy that searches toward
the goal,

 based on the information from the current
state so far

Uninformed search strategies

Breadth-first search

 Uniform cost search

Depth-first search

 Depth-limited search

 Iterative deepening search

Bidirectional search

Breadth-first search

The root node is expanded first (FIFO)

All the nodes generated by the root

node are then expanded

And then their successors and so on

Breadth-First Strategy

2 3

4

New nodes are inserted at the end of FRINGE

1

5 6 7

FRINGE = (1)

Breadth-First Strategy

FRINGE = (2, 3)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-First Strategy

FRINGE = (3, 4, 5)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-First Strategy

FRINGE = (4, 5, 6, 7)

4

New nodes are inserted at the end of FRINGE

1

2 3

5 6 7

Breadth-first search (Analysis)

Breadth-first search

 Complete – find the solution eventually

Optimal, if step cost is 1

The disadvantage

 if the branching factor of a node is large,

 for even small instances (e.g., chess)

 the space complexity and the time complexity

are enormous

Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd = b(bd-1) = O(bd+1)

Space? O(bd+1) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Breadth-first search (Analysis)
assuming 10000 nodes can be processed per second, each with

1000 bytes of storage

THANKYOU

SNS COLLEGE OF

TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

M.POORNIMA DEVI,AP/AIML

19AMB303-FULL STACK AI

Uniform cost search

Breadth-first finds the shallowest goal state

 but not necessarily be the least-cost solution

 work only if all step costs are equal

Uniform cost search

 modifies breadth-first strategy

 by always expanding the lowest-cost node

 The lowest-cost node is measured by the path

cost g(n)

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete? Yes, if step cost ≥ ε

Time? numbr of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε)) where C* is the cost of the
optimal solution

Space? Number of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε))
Optimal? Yes – nodes expanded in increasing order of
g(n)

let

C* be the cost of optimal solution.

ε is possitive constant (every action cost)

Depth-first search

Always expands one of the nodes at the

deepest level of the tree

Only when the search hits a dead end

 goes back and expands nodes at shallower levels

 Dead end leaf nodes but not the goal

Backtracking search

 only one successor is generated on expansion

 rather than all successors

 fewer memory

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
S

A D

B D A E

E B B F

G C G

19 19 17

D F B F C E A C G

14 17 15 15 13

F

G 25

C E

11

Depth-first search (Analysis)

Not complete

 because a path may be infinite or looping

 then the path will never fail and go back try

another option

Not optimal

 it doesn't guarantee the best solution

It overcomes

 the time and space complexities

Properties of depth-first search

Complete? No: fails in infinite-depth spaces,
spaces with loops
 Modify to avoid repeated states along path
 complete in finite spaces

Time? O(bm): terrible if m is much larger than
d
 but if solutions are dense, may be much faster

than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No

Depth-Limited Strategy

Depth-first with depth cutoff k (maximal
depth below which nodes are not
expanded)

Three possible outcomes:

 Solution

 Failure (no solution)

 Cutoff (no solution within cutoff)

Depth-limited search

It is depth-first search

 with a predefined maximum depth

 However, it is usually not easy to define
the suitable maximum depth

 too small no solution can be found

 too large the same problems are
suffered from

Anyway the search is

 complete

 but still not optimal

Depth-limited search
S

B E

A D

D A

E B B F

G C G

19 19 17

D F B F C E A C G

14 17 15 15 13

F

G 25

C E

11

depth = 3

3

6

Iterative deepening search

No choosing of the best depth limit

It tries all possible depth limits:

 first 0, then 1, 2, and so on

 combines the benefits of depth-first and

breadth-first search

Iterative deepening search

Iterative deepening search

(Analysis)
optimal

complete

Time and space complexities

 reasonable

suitable for the problem

 having a large search space

 and the depth of the solution is not known

Properties of iterative deepening

search

Complete? Yes

Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd

= O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1

Bidirectional search

Run two simultaneous searches

 one forward from the initial state another
backward from the goal

 stop when the two searches meet

However, computing backward is difficult

 A huge amount of goal states

 at the goal state, which actions are used to
compute it?

 can the actions be reversible to computer its
predecessors?

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity = O(bd/2) << O(bd)

BidirectionSal search

D F B F C E A C G

14 17 15 15 13

G C G

19 19 17

F

G 25

A D

B D A E

C E E B B F

11

Forward

Backwards

THANKYOU

