SNS COLLEGE OF
TECHNOLOGY

Coimbatore-35

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,
Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

19AMB303-FULL STACK Al

(T rITUTIONS

M.POORNIMA DEVI,AP/AIML

Searching for solutions

¢ Finding out a solution is done by
searching through the state space

& All problems are transformed
as a search tree

generated by the initial state and
successor function

TSI T IO S

Search tree

& Initial state
The root of the search tree is a search node

¢ Expanding
applying successor function to the current state
thereby generating a new set of states

¢ leaf nodes

the states having no successors

Fringe : Set of search nodes that have not been
expanded yet.

& Refer to next figure

TUTIons

2T N /N /N
="/ N T / \ / N
L AU W S R W A S
 Aad) (Fagaras) Oradea)y MmnaVlem) ¢ Arad Y C lugg) O ¢ Amd) ¢ Oradea)

a T fu

,f"fo‘n ﬁf‘f& ,r’x,% ,rf’?F'x ,f”ﬁh‘*n ;'ﬁ” _.-"'.'-.T-x"‘w.m “ﬁ'g

£ r

TUTIons

Search tree

& The essence of searching
In case the first choice is not correct
choosing one option and keep others for later
Inspection

¢ Hence we have the search strategy

which determines the choice of which state to
expanc

good choice - fewer work - faster

& Important:
State space # search tree

Search tree

& A node is having five components:
STATE: which state it is in the state space
PARENT-NODE: from which node it is generated

ACTION: which action applied to its parent-node
to generate it

PATH-COST: the cost, g(n), from initial state to
the node n itself

DEPTH: number of steps along the path from the
Initial state

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Informal Description of Genearl search Algorithm

INSTO]

V&

Search tree

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node «+ REMOVE-FRONT(fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors<— the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION[s| < action; STATE[s| + result
PATH-COST[s] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] — DEPTH[nOde] + 1
add s to successors

return successors

LTS FITUTIONS

& The evaluation of a search strategy

Completeness:

e is the strategy guaranteed to find a solution when
there is one?

Optimality:
e does the strategy find the highest-quality solution
when there are several different solutions?

Time complexity:
e how long does it take to find a solution?
Space complexity:
e how much memory is needed to perform the search?

+~€asuring problem-solving performance s

% In Al, complexity is expressed In

b, branching factor, maximum number of
successors of any node

d, the depth of the shallowest goal node.
(depth of the least-cost solution)
m, the maximum length of any path in the state
space
& Time and Space is measured in
number of nodes generated during the search
maximum number of nodes stored in memory

& For effectiveness of a search algorithm
we can just consider the total cost

The total cost = path cost (g) of the solution
found + search cost

e search cost = time necessary to find the solution

& Tradeoft:
(long time, optimal solution with least g)

vs. (shorter time, solution with slightly larger
path cost g)

LTS FITUTIONS

CTTEFITUTIONS

4 Uninformed search strategies

¢ Uninformed search
no information about the number of steps

or the path cost from the current state to
the goal

search the state space blindly

& Informed search, or heuristic search

a cleverer strategy that searches toward
the goal,

based on the information from the current
state so far

ninformed search strategies

& Breadth-first search
Uniform cost search

& Depth-first search
Depth-limited search
lterative deepening search

% Bidirectional search

(T rITUTIONS

Breadth-first search

& The root node is expanded first (FIFO)

& All the nodes generated by the root
node are then expanded

4% And then their successors and so on

=

20 & ®)

— s [[
Breadth-First Strategy

TUTIons

New nodes are inserted at the end of FRINGE

»1@

2 3 FRINGE = (1)
4./ 5@ 6@ 7

— s [[
Breadth-First Strategy

New nodes are inserted at the end of FRINGE

l@

. / \n FRINGE = (2, 3)

Jady

TUTIons

—— ——— e [
Breadth-First Strategy

>YB-

LT rITUTIONS

New nodes are inserted at the end of FRINGE

l@

2.\/ :}n FRINGE = (3, 4, 5)
4{1,/ o9 6/ X

—— ——— e [
Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (4, 5, 6, 7)

& Breadth-first search
Complete — find the solution eventually
Optimal, if step cost is 1
The disadvantage
iIf the branching factor of a node is large,

for even small instances (e.g., chess)

e the space complexity and the time complexity
are enormous

TSI T IO S

S [| s [

(T FITUTIONS

roperties of breadth-first search

& Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +bd = b(bd-1) = O(bd*7)

.
.

- Space? O(bd+1) (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)

.

& Space is the bigger problem (more than time)

« assuming 10000 nodes can be processed per second, each with

1000 bytes of storage

Depth Nodes
2 1100
4 [11,100
6 1)
8 10)”
1() 1)
|2 1)

|4 1)1

Figure 3.11
assume branching factor b

|

Time

I

19

3

129

3D

)

IJ

S
3

seconds
seconds
minutes
hours
days
years

years

|06
10

1)

1)

Memory

megabyte
megabytes
gigabytes
terabytes
terabytes
petabytes
exabyte

['ime and memory requirements for breadth-first search. The numbers shown
10 10,000 nodes/second: 1000 bytes/node.

TUTIons

THANKYOU

TUTIons

SNS COLLEGE OF
TECHNOLOGY

Coimbatore-35

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,
Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

19AMB303-FULL STACK Al

(T rITUTIONS

M.POORNIMA DEVI,AP/AIML

U n ifO rm COSt Sea rC h //‘/_,///Uf/o/b

& Breadth-first finds the shallowest goal state
but not necessarily be the least-cost solution
work only if all step costs are equal

¢ Uniform cost search
modifies breadth-first strategy
e by always expanding the lowest-cost node

The lowest-cost node is measured by the path
cost g(n)

&

&
&
&
&

let

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost > ¢

Time? numbr of nodes with g < cost of optimal
solution, O(bcelling(C*/ ¢)) where C is the cost of the
optimal solution

Space? Number of nodes with g < cost of optimal
solution, O(beeiling(C*/ &)
Optimal? Yes — nodes expanded in increasing order of

g(n)

C* be the cost of optimal solution.

€ is possitive constant (every action cost)

CTTEFITUTIONS

D e pt h _fi rSt S e a rC h //.vh;}‘f‘//'f'br/o/vs

¢ Always expands one of the nodes at the
deepest level of the tree

& Only when the search hits a dead end
goes back and expands nodes at shallower levels
Dead end - leaf nodes but not the goal

& Backtracking search
only one successor is generated on expansion

rather than all successors
fewer memory

—_— —— f—— [—
Depth-first search

¢, EXpand deepest unexpanded node
¢ Implementation:
» fringe = LIFO queue, i.e., put successors at front

TUTIons

e ".._.- ..
i} L
Y | S
ra "-_ 4
P i I ! o
& & : Ly}
' f "
if L i
| |]
- " -
|"J_ i .". 4 L l.-'

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

I ", o’ ",

.ﬂ'l_'ﬂ:. e . i~ e

F I.J ¥ |. E i II- i i

e s b _J N

__.' "IRY _.' . 4
e o - e T T e T e T .

r -

._'_'-'] Pl o _.':___I .._|TJ_I i | ____:_..__l

Depth-first search

¢ EXpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

Depth-first search W77 911577%

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

Depth-first search W77 911577%

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

FIrTurions

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

S [| s [

Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front

TUTIons

" Depth-first search (Analysis)

¢ Not complete
because a path may be infinite or looping

then the path will never fail and go back try
another option

% Not optimal
it doesn't guarantee the best solution

% It overcomes
the time and space complexities

& Complete? No: fails in infinite-depth spaces,

spaces with loops

Modify to avoid repeated states along path
- complete in finite spaces

¢ Time? O(b™m): terrible if m is much larger than
d

but if solutions are dense, may be much faster
than breadth-first

¢ Space? O(bm), i.e., linear space!

+ Optimal? No

TSI T IO S

Depth-Limited Strategy

& Depth-first with depth cutoff k (maximal
depth below which nodes are not
expanded)

% Three possible outcomes:
Solution
Failure (no solution)
Cutoff (no solution within cutoff)

Depth-limited search

& It is depth-first search
with a predefined maximum depth

However, it is usually not easy to define
the suitable maximum depth

too small 2 no solution can be found

too large - the same problems are
suffered from

& Anyway the search is

complete
but still not optimal

LTS FITUTIONS

———— ——— | —— | ———

Depth-limjted search
= depth = 3

TUTIons

|

f/, \ \ \
) = { N\ A / _\\ /_Vﬂ\ 4 ’_7\\‘\. //“\‘-\ ,/- \\‘n
b &),8 B © E W& © ©G
’ ‘ ‘ 17 ‘ 15 15 13

B : ’ '..\
@ y] / | \ \
& / [‘l e / l ,’,A \ '| \ \
F/o0 y /| N\ \
\
/

lterative deepening search

& No choosing of the best depth limit
s, It tries all possible depth limits:

first O, then 1, 2, and so on

combines the benefits of depth-first and
breadth-first search

lterative deepening search 7T

Linmnt=10) ’@ = ®»

Limit= | *@ A /ﬁ\\ EN

Limit =2 *® //,,@\\ /’_’__ //'@\
@ ® c e o

. . .

- ~ i
o/(c Oy 0/. » »dﬂ _d/.\o ‘\Q’\@ /‘ w i’\o

lterative deepening search 1
(Analysis)
¢, Optimal
¢, complete

& Time and space complexities
reasonable

% suitable for the problem
having a large search space
and the depth of the solution is not known

= Properties of iterative deepening ~1h
search

& Complete? Yes

s

& Time? (d+1)b% + d b® + (d-1)b2 + ... + bd
= O(bd)

s

& Space? O(bd)

s

% Optimal? Yes, if step cost = 1

& Run two simultaneous searches

one forward from the initial state another
backward from the goal

stop when the two searches meet

& However, computing backward is difficult
A huge amount of goal states

at the goal state, which actions are used to
compute it?

can the actions be reversible to computer its
predecessors?

S [| s [

TUTIons

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE?2

. Forward
» Backwards

THANKYOU

TUTIons

