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Searching for solutions



¢ Finding out a solution is done by
searching through the state space

& All problems are transformed
as a search tree

generated by the initial state and
successor function
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Search tree

& Initial state
The root of the search tree is a search node

¢ Expanding
applying successor function to the current state
thereby generating a new set of states

¢ leaf nodes

the states having no successors

Fringe : Set of search nodes that have not been
expanded yet.

& Refer to next figure
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Search tree

& The essence of searching
In case the first choice is not correct
choosing one option and keep others for later
Inspection

¢ Hence we have the search strategy

which determines the choice of which state to
expanc

good choice - fewer work - faster

& Important:
State space # search tree




Search tree

& A node is having five components:
STATE: which state it is in the state space
PARENT-NODE: from which node it is generated

ACTION: which action applied to its parent-node
to generate it

PATH-COST: the cost, g(n), from initial state to
the node n itself

DEPTH: number of steps along the path from the
Initial state




function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Informal Description of Genearl search Algorithm
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Search tree

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node «+ REMOVE-FRONT( fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors<— the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION[s| < action; STATE[s| + result
PATH-COST[s] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] — DEPTH[nOde] + 1
add s to successors

return successors
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& The evaluation of a search strategy

Completeness:

e is the strategy guaranteed to find a solution when
there is one?

Optimality:
e does the strategy find the highest-quality solution
when there are several different solutions?

Time complexity:
e how long does it take to find a solution?
Space complexity:
e how much memory is needed to perform the search?



+~€asuring problem-solving performance s

% In Al, complexity is expressed In

b, branching factor, maximum number of
successors of any node

d, the depth of the shallowest goal node.
(depth of the least-cost solution)
m, the maximum length of any path in the state
space
& Time and Space is measured in
number of nodes generated during the search
maximum number of nodes stored in memory



& For effectiveness of a search algorithm
we can just consider the total cost

The total cost = path cost (g) of the solution
found + search cost

e search cost = time necessary to find the solution

& Tradeoft:
(long time, optimal solution with least g)

vs. (shorter time, solution with slightly larger
path cost g)
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4 Uninformed search strategies

¢ Uninformed search
no information about the number of steps

or the path cost from the current state to
the goal

search the state space blindly

& Informed search, or heuristic search

a cleverer strategy that searches toward
the goal,

based on the information from the current
state so far




ninformed search strategies

& Breadth-first search
Uniform cost search

& Depth-first search
Depth-limited search
lterative deepening search

% Bidirectional search
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Breadth-first search

& The root node is expanded first (FIFO)

& All the nodes generated by the root
node are then expanded

4% And then their successors and so on

=
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Breadth-First Strategy
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New nodes are inserted at the end of FRINGE
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Breadth-First Strategy

New nodes are inserted at the end of FRINGE
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Breadth-First Strategy
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New nodes are inserted at the end of FRINGE
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Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (4, 5, 6, 7)




& Breadth-first search
Complete — find the solution eventually
Optimal, if step cost is 1
The disadvantage
iIf the branching factor of a node is large,

for even small instances (e.g., chess)

e the space complexity and the time complexity
are enormous
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roperties of breadth-first search

& Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +bd = b(bd-1) = O(bd*7)

.
.

- Space? O(bd+1) (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)

.

& Space is the bigger problem (more than time)




« assuming 10000 nodes can be processed per second, each with

1000 bytes of storage
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Figure 3.11
assume branching factor b
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['ime and memory requirements for breadth-first search. The numbers shown
10 10,000 nodes/second: 1000 bytes/node.

TUTIons




THANKYOU

TUTIons



SNS COLLEGE OF
TECHNOLOGY

Coimbatore-35

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A+’
Grade Approved by AICTE, New Delhi & Affiliated to Anna University,
Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING

19AMB303-FULL STACK Al

(T rITUTIONS

M.POORNIMA DEVI,AP/AIML



U n ifO rm COSt Sea rC h //‘/_,///Uf/o/b

& Breadth-first finds the shallowest goal state
but not necessarily be the least-cost solution
work only if all step costs are equal

¢ Uniform cost search
modifies breadth-first strategy
e by always expanding the lowest-cost node

The lowest-cost node is measured by the path
cost g(n)




&

&
&
&
&

let

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost > ¢

Time? numbr of nodes with g < cost of optimal
solution, O(bcelling(C*/ ¢)) where C is the cost of the
optimal solution

Space? Number of nodes with g < cost of optimal
solution, O(beeiling(C*/ &)
Optimal? Yes — nodes expanded in increasing order of

g(n)

C* be the cost of optimal solution.

€ is possitive constant (every action cost)
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¢ Always expands one of the nodes at the
deepest level of the tree

& Only when the search hits a dead end
goes back and expands nodes at shallower levels
Dead end - leaf nodes but not the goal

& Backtracking search
only one successor is generated on expansion

rather than all successors
fewer memory
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Depth-first search

¢, EXpand deepest unexpanded node
¢ Implementation:
» fringe = LIFO queue, i.e., put successors at front
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Depth-first search

¢ EXxpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front
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Depth-first search

¢ EXpand deepest unexpanded node
¢ Implementation:
e fringe = LIFO queue, i.e., put successors at front
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" Depth-first search (Analysis)

¢ Not complete
because a path may be infinite or looping

then the path will never fail and go back try
another option

% Not optimal
it doesn't guarantee the best solution

% It overcomes
the time and space complexities



& Complete? No: fails in infinite-depth spaces,

spaces with loops

Modify to avoid repeated states along path
- complete in finite spaces

¢ Time? O(b™m): terrible if m is much larger than
d

but if solutions are dense, may be much faster
than breadth-first

¢ Space? O(bm), i.e., linear space!

+ Optimal? No
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Depth-Limited Strategy

& Depth-first with depth cutoff k (maximal
depth below which nodes are not
expanded)

% Three possible outcomes:
Solution
Failure (no solution)
Cutoff (no solution within cutoff)



Depth-limited search

& It is depth-first search
with a predefined maximum depth

However, it is usually not easy to define
the suitable maximum depth

too small 2 no solution can be found

too large - the same problems are
suffered from

& Anyway the search is

complete
but still not optimal
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Depth-limjted search
= depth = 3
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lterative deepening search

& No choosing of the best depth limit
s, It tries all possible depth limits:

first O, then 1, 2, and so on

combines the benefits of depth-first and
breadth-first search



lterative deepening search 7T
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lterative deepening search 1
(Analysis)
¢, Optimal
¢, complete

& Time and space complexities
reasonable

% suitable for the problem
having a large search space
and the depth of the solution is not known



= Properties of iterative deepening ~1h
search

& Complete? Yes

s

& Time? (d+1)b% + d b® + (d-1)b2 + ... + bd
= O(bd)

s

& Space? O(bd)

s

% Optimal? Yes, if step cost = 1




& Run two simultaneous searches

one forward from the initial state another
backward from the goal

stop when the two searches meet

& However, computing backward is difficult
A huge amount of goal states

at the goal state, which actions are used to
compute it?

can the actions be reversible to computer its
predecessors?
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Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE?2




. Forward
» Backwards
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