SNS COLLEGE OF TECHNOLOGY

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A++' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

 OPTICAL AND MICROWAVE ENGINEERINGIII YEAR/ VI SEMESTER

UNIT 5 - OPTICAL NETWORKS
TOPIC -LINK POWER BUDGET

LINK POWER BUDGET

For optimizing link power budget an optical power loss model is to be studied as shown in Fig. 6.2.3. Let lc denotes the losses occur at connector. Lsp denotes the losses occur at splices. αf denotes the losses occur in fiber.

OPTICAL FIBERS/A.SAKIRA PARVEEN/AP, ECE/SNSCT

POINT TO POINT LINK

All the losses from source to detector comprises the total loss (PT) in the system.

- Link power margin considers the losses due to component aging and temperature fluctuations. Usually a link margin of $6-8 \mathrm{~dB}$ is considered while estimating link power budget.
- Total optical loss $=$ Connector loss $+($ Splicing loss + Fiber attenuation $)+$ System margin (Pm)
$\mathrm{PT}=2 \mathrm{lc}+\alpha \mathrm{fL}+$ System margin (Pm)
where, L is transmission distance.

Example 1 : Design as optical fiber link for transmitting $15 \mathrm{Mb} / \mathrm{sec}$ of data for a distance of 4 km with BER of 10-9.

Solution :

Bandwidth x Length $=15 \mathrm{Mb} / \mathrm{sec} \times 4 \mathrm{~km}=(60 \mathrm{Mb} / \mathrm{sec}) \mathrm{km}$
Selecting optical source : LED at 820 nm is suitable for short distances.
The LED generates - 10 dBm optical power.
Selecting optical detector : PIN-FER optical detector is reliable and has 50 dBm sensitivity.
Selection optical fiber : Step-index multimode fiber is selected. The fiber has bandwidth length product of $100(\mathbf{M b} / \mathbf{s}) \mathbf{k m}$.

Links power budget :

Assuming :
Splicing loss $1 \mathrm{ls}=0.5 \mathrm{~dB} /$ slice
Connector loss lc $=1.5 \mathrm{~dB}$
System link powr margin $\mathrm{Pm}-8 \mathrm{~dB}$
Fiber attenuation $\alpha \mathrm{f}=6 \mathrm{~dB} / \mathrm{km}$
Actual total loss $=(2 \times \mathrm{lc})+\alpha \mathrm{fL}+\mathrm{Pm}$
$\mathrm{PT}=(2 \times 1.5)+(6 \times 4)+8$
$\mathrm{PT}=35 \mathrm{~dB}$
Maximum allowable system loss :
Pmax $=$ Optical source output power- optical receiver sensitivity
$\operatorname{Pmax}=-10 \mathrm{dBm}-(-50 \mathrm{dBm})$
Pmax $=40 \mathrm{dBm}$
Since actual losses in the system are less than the allowable loss, hence the system is functional.

-Example 2 :
A transmitter has an output power of 0.1 mW . It is used with a fiber having $\mathrm{NA}=$ 0.25 , attenuation of $6 \mathrm{~dB} / \mathrm{km}$ and length 0.5 km . The link contains two connectors of 2 dB average loss. The receiver has a minimum acceptable power (sensitivity) of 35 dBm . The designer has allowed a 4 dB margin. Calculate the link power budget.

Solution :

Source power $\mathrm{Ps}=0.1 \mathrm{~mW}$
$\mathrm{Ps}=-10 \mathrm{dBm}$
Since NA $=0.25$
Coupling loss $=-10 \log$ (NA2)
$=-10 \log (0.252)=12 \mathrm{~dB}$
Fiber loss $=\alpha \mathrm{f}$ L
$\mathrm{lf}=(6 \mathrm{~dB} / \mathrm{km})(0.5 \mathrm{~km})$
lf $=3 \mathrm{~dB}$
Connector loss $=2(2 \mathrm{~dB})$
lc $=4 \mathrm{~dB}$
Design margin $\mathrm{Pm}=4 \mathrm{~dB}$
\square Actual output power Pout $=$ Source power $-(\Sigma$ Losses $)$
Pout $=10 \mathrm{dBm}-[12 \mathrm{~dB}+3+4+4]$, Pout $=\mathbf{- 3 3} \mathbf{~ d B m}$
Since receiver sensitivity given is -35 dBm .
i.e. $\operatorname{Pmin}=\mathbf{- 3 5} \mathbf{~ d B m}$

As Pout > Pmin, the system will perform adequately over the system operating life.

Example 3 : In a fiber link the laser diode output power is 5 dBm , source-fiber coupling loss $=3 \mathrm{~dB}$, connector loss of 2 dB and has 50 splices of 0.1 dB loss. Fiber attenuation loss for 100 km is 25 dB , compute the loss margin for i) APD receiver with sensitivity -40 dBm ii) Hybrid PINFET high impedance receiver with sensitivity -32 dBm .

Solution : Power budget calculations
Source output power 5 dBm
Source fiber coupling loss 3 dB
Connector loss 2 dB
Connector loss $\quad 5 \mathrm{~dB}$
Fiber attenuation 25 Db
Total loss $\mathbf{3 5} \mathbf{d B}$
Available power to receiver : $(5 \mathrm{dBm}-35 \mathrm{dBm})-30 \mathrm{dBm}$
i) APD receiver sensitivity -40 dBm
ii) Loss margin [-40-(-30)] 10 dBm
ii) H-PIN FET high0impedance receiver -32 dBm

Loss margin [-32-(-30)] 2 dBm

ASSESSMENT TIME

| What's the issue/
 question/topic? | What dol think
 about it? | What docs my
 partner think? | What will
 we share? |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | |

THANK YOU

