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Momentum and Energy equations

The Momentum Equations:

The differential forms of the equations of motion Iin the
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 The forces acting on the control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric,
and magnetic forces) and are proportional to the volume of the body, and
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e Newton’s second law of motion for the control volume
1S

Acceleration ‘ [ Net force (body and surface)
- : PPPT - (6-22)
acting in that direction

(Mass >( |

in a specified direction

 where the mass of the fluid element within the control volume is

om = pldx-dy-1)

* Noting that flow Is steady and two-dimensional and thus u 5 u(x, y), the
total differential of u Is

HEAT & MASS TRANSFER
S.ARUNKUMAR / APME



* Then the acceleration of the fluild element In the x direction
becomes
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* The normal stress Is related to the velocity

O[EGIEEY 914/0x and ov/9y,

e that are much smaller than to which shear
stress Is related.

* Then the net surface force acting in the x-direction

becomes
o aP 3T P
F -—Td\' (dx-1) — | —dx J(dy-1) = (f— _E (dx-dy-1)

dy -~ ox ay oX

surlace. 5

a- aP
(p. ‘: — —)(d.\‘ody-l)

ay*  dx
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since 7 = u(ou/dy).

dividing by dx-dy-1

ed to the right
It volume of the fluid.
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« Conservation of Energy Equation The energy balance for any system
undergoing any process is expressed as Ein - Eout = AEsystem, which
states that the change in the energy content of a system during a
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* Noting that energy can be transferred by heat, work, and mass only, the
energy balance for a steady-flow control volume can be written explicitly
as

7 e T LR, — B Jo Y — (
(Lin Lnul)h_\ heat ' (Lm L‘_»ul.)b).' work ([' Luui )h_\ mass O

11l
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>
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(E_

Mass flow rate of the fluid entering the control
volume from the left iIs pu(dy-1), the rate of energy
transfer to the control volume by mass In the Xx-
direction Is, from

Hme )
o \ stream’xy 5
("I( siream )1 [(”u siream )l T (‘1"

— E

out )h\ 2SS, X ax
d[ puldy-1)c T aT
—— pc(u— + T—)dld\ (6-31)

ax ax dx
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 The energy transfers by heat and mass flow associated with a
differential control volume In the thermal boundary layer In
steady two- dimensional flow.
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* Repeating this for the y-direction and adding the results, the net
rate of energy transfer to the control volume by mass Is
determined to be

: - ol ou ol v
(E in bout) by mass P C/) u-_— T B (].X'([._\’ — P Cp A k= O 2 dl.d.\’
BEE X X dy dy

ol o7
—pC,\ U + UV — d.\‘d.\' (6-32)
oxX ().\-’

since du/dx + dv/dy = O from the continuity equationj

v
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* The net rate of heat conduction to the volume element
INn the x-direction IS

(Ein o Eout)by heat,x Q.\' o

* Repeating this for the y-direction and adding the results, the net
rate of energy transfer to the control volume by heat conduction
becomes

9*T o*T *T  9*T
= k——dxdy + k —dxdy = k(

N

(E. —
= dx- dv“

out)by heat

0x- i dv~
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« Then the energy equation for the steady two-
dimensional flow of a fluid with constant properties and
negligible shear stresses Is obtained by
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* When the viscous shear stresses are not negligible, their effect Is
accounted for by expressing the energy equation as

* where the viscous dissipation function ® is obtained after a
lengthy analysis
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* For the special case of a stationary fluid, u = v = 0, the energy
equation reduces, as expected, to the steady two-dimensional
heat conduction equation,
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EXAMPLE 6-2 Temperature Rise of 0il in a Journal Bearing

The flow of oil in a journal bearing can be approximated as parallel flow be-
tween two large plates with one plate moving and the other stationary. Such
flows are known as Couette flow.

Consider two large isothermal plates separated by 2-mm-thick oil film. The
upper plates moves at a constant velocity of 12 m/s, while the lower plate is
stationary. Both plates are maintained at 20°C. (a) Obtain relations for the
velocity and temperature distributions in the oil. (b) Determine the maximum
temperature in the oil and the heat flux from the oil to each plate (Fig. 6-32).

Moving plate

V=12m/s

S.ARUNKUMAR / APME




SULUTION Parallel flow of oil between two plates is considered. The velocity
and temperature distributions, the maximum temperature, and the total heat
transfer rate are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Oil is an incompressible
substance with constant properties. 3 Body forces such as gravity are negli-
gible. 4 The plates are large so that there is no variation in the z direction.

Properties The properties of oil at 20°C are (Table A-13):

k=0.145W/m:-K and p = 0.8374 kg/m-s = (0.8374 N-s/m-

Analysis (a) We take the x-axis to be the flow direction, and y to be the nor-
mal direction. This is parallel flow between two plates, and thus ¥ = 0. Then
the continuity equation (Eqg. 6-21) reduces to

dit Jv dit

Continuity: — 4+ — =05 —=0 ->u=uQy)
X ( ?_\‘ oX
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Therefore, the x-component of velocity does not change in the flow direction
(1.e., the velocity profile remains unchanged). Noting that v = u(y), v = 0, and
dPlax = O (flow is maintained by the motion of the upper plate rather than the
pressure gradient), the xxmomentum equation (Eq. 6-28) reduces to

» . » \ . ’

au A ! apP d-u
X-momentium: RtV |= W — — —_— = ()

ox dy dy- oxX (1'\“

This I1s a second-order ordinary differential equation, and integrating it twice
gives
u(y) = C,y + C,

The fluid velocities at the plate surfaces must be equal to the velocities of the

plates because of the no-slip condition. Therefore, the boundary conditions are
u(0) = 0 and u(L) = V, and applying them gives the velocity distribution to be

|| vV ) — \
"
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Frictional heating due to viscous dissipation in this case is significant be-

cause of the high viscosity of oil and the large plate velocity. The plates are
isothermal and there is no change in the flow direction, and thus the tempera-

ture depends on yonly, T = T(y). Also, u = u(y) and v = 0. Then the energy
equation with dissipation (Egs. 6-36 and 6-37) reduce to

a*T du \> d ] v\2
oy y .

since auldy = VIL. Dividing both sides by k and integrating twice give

Ly Y
I(y) = ——(—V) + Gy + C,

2k \ L

Applying the boundary conditions 7(0) = Ty and (L) = T; gives the tempera-
ture distribution to be

V=11
AR / { ( — 1— J

:)':. \ / L

(b) The temperature gradient is determined by differentiating 7(y) with respect

to y,
an ( =g _)
dy 2kL L
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The location of maximum temperature is determined by setting d7/dy = 0O and

solving for y,

1T vl :

L (S P
dy 2kL L :

Therefore, maximum temperature occurs at mid plane, which i1s not surpris-

Ing since both plates are maintained at the same temperature. The maximum
temperature i1s the value of temperature at y = L/2,

42 V(L2 L/2)* V-
T :T(—):Tﬁ'u ( S )):T~'~“

o | I~

2k \ L 8k
(0.8374 N-s/m*)(12 m/s), ( | W )
8(0.145 W/ m-K) 1 N-m/s

YV
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Heat flux at the plates Is determined from the definition of heat flux,

, T V? V?
do — —k — — “]\l":— (1 —0) = —#3
dy|. _, 2kL 2L
(0.8374 N-s/m*)(12 m/s)’ ( | kW ) R
p = —30.1 KkW/m*
2(0.002 m) 1000 N-m/s
. dT uv: SO
q; = —'I\.“:L— =K Zl(L(l — 2) = T 30.1 KW/m

Therefore, heat fluxes at the two plates are equal in magnitude but opposite
In sign.
./
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ANALOGIES BETWEEN MOMENTUM AND
HEAT TRANSFER

* In forced convection analysis, we are primarily interested in the
determination of the quantities Cf (to calculate shear stress at the
wall) and Nu (to calculate heat transfer rates).
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Reynolds — Colburn Analogy

 Reconsider the non-dimensionalized momentum and energy
equations for steady, incompressible, laminar flow of a fluid with
constant properties and negligible viscous dissipation

Momentum:

Energy:

1EAT & MASS TRANSFER
S.ARUNKUMAR / APME




» which are exactly of the same form for the dimensionless
velocity u* and temperature T*. The boundary conditions
for u* and T* are also identical.
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* Then we have
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* Reynolds analogy Is of limited use because of the restrictions Pr
=1 and OP*/ 6 x* = 0 on Iit, and it is desirable to have an analogy
that Is applicable over a wide range of Pr. This is done by adding
a Prandtl number correction.

M A

C,. = 0.664 Re ' and

ation,
Colburn

JII
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EXAMPLE 6-3 Finding Convection Coefficient
from Drag Measurement

A 2-m X 3-m flat plate is suspended in a room, and is subjected to air flow

parallel to its surfaces along its 3-m-long side. The free stream temperature
and velocity of air are 20°C and 7 m/s. The total drag force acting on the plate

IS measured to be 0.86 N. Determine the average convection heat transfer
coefficient for the plate (Fig. 6-42).

SULUTION A flat plate is subjected to air flow, and the drag force acting on it
IS measured. The average convection coefficient is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The edge effects are neg-
ligible. 3 The local atmospheric pressure is 1 atm.

Properties The properties of air at 20°C and 1 atm are (Table A-15):
p = 1.204 kg/m", ¢, = 1.007 kJ/kg-K. Pr = 0.7309
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Analysis The flow Is along the 3-m side of the plate, and thus the characteris-
tic length is L = 3 m. Both sides of the plate are exposed to air flow, and thus
the total surface area iIs

A.=2WL=22m)3m) = 12 m’

For flat plates, the drag force is equivalent to friction force. The average fric-
tion coefficient C; can be determined from Eq. 6-11,

pV>
F,= C/A, e

—

Solving for C; and substituting,

Er. 0.86 N (1 kg-m/s’
- I N

C, = —— . —
T pA VA2 (1.204 kg/m*)(12 m?)(7 m/s)*/2

) = 0.00243

Then the average heat transfer coefficient can be determined from the modi-
fied Reynolds analogy (Eq. 6-83) to be
CipVe,  0.00243 (1.204 kg/m*)(7 m/s)(1007 J/kg-K)

h = 5 i = > 0730023 = 12.7 W/m*“-K

A 'vl -l‘ —_—
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TURBULENT BOUNDARY LAYER

« Consider the parallel flow of a fluid over a flat plate,. Surfaces
that are slightly contoured such as turbine blades can also be
approximated as flat plates with reasonable accuracy.

 The x-coordinate Is measured along the plate surface from the
leading edge of the plate in the direction of the flow, and y Is
measured from the surface in the normal direction.

* The fluid approaches the plate in the x-direction with a uniform
velocity V, which is practically identical to the free-stream velocity
over the plate away from the surface

Laminar boundary Transtilion . Turbulent boundary
layer region

4 | Turbulent
region

— Viscous sublayer




 The velocity of the particles in the first fluid layer
adjacent to the plate becomes zero because of the no-
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* The region of the flow above the plate bounded by & In
which the effects of the viscous shearing forces caused
by fluid viscosity are felt is called the velocity boundary
layer.

 The boundary layer thickness, 0, Is typically defined as

V remains
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MIXING LENGTH CONCEPT

 Mixing length iIs defined as that distance In the
transverse direction which must be covered by a lump
of fluid particle travelling with its original mean velocity

yeen two fluid
nge of momentum.
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 The turbulent shear stress can only be calculated
when the fluctuating components are known. But since
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» Consider two fluid masses separated by mixing length (1).
» The lower mass has an instantaneous velocity U and a
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For the lower mass:

The initial velocity=u

The initial momentum = (pAv' )u

The final momentum of the same mass =(pAv')(u + u')

The change in momentum = (pAv' ) (2 + u') — (pAv')u

. ) F r
~Shear force=pAv v

shearingforce pAu'v’ '
shearingarea A U

This is called Turbulent Reynolds stress.
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fluid mass (p)

FIP777 7777777777777 A

As can be seen m the fioure.
TULE,

q ~Shearstress=pu v = plQ(g!—‘;)"2
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Turbulence Modelling

 The Instantaneous variables are decomposed into MEAN and
FLUCTUATING guantities:
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« The definitions of Instantaneous quantities are substituted Into the
equations of the INSTANTANEOUS MOTION, which are then averaged to
produce the equations of the MEAN MOTION.

« For an incompressible flow, the AVERAGED equations are:




« The statistical-averaging process has Iintroduced unknown
turbulent correlations into the mean-flow equations which
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« A TURBULENCE MODEL can be described as a set of relations
and equations needed to determine the unknown turbulent
correlations that have arisen from the averaging process.

Spendent variables.
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Classification Of Turbulence Models

 ZERO-EQUATION MODELS- V. and L are calculated directly from the
local mean flow quantities (e.g. Prandtl's mixing-length model).

 ONE-EQUATION MODELS- V. Is calculated from a suitable transport
equation, usually the turbulent kinetic energy, KE, and the length scale, L.,
IS prescribed empirically (e.g. Prandtl's k-L model).

solved together with a 2-equation
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k-€ model

* The k equation Is:

* The € equation can be obtained from the NS equations
but It contains several undetermined quantities; It IS
therefore derived “mimicking” the k equation
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* The eddy viscosity Is obtained as:

1.  Decaying homogeneous isotropic turbulence

2.  Homogeneous shear flow

3. The Logarithmic Layer



Structure of the Turbulent Boundary Layer

Universal Law (velocity profile)

Lominar
Sublayer

* Turb. zone

s ATHIghReyholdS numbertheswscous dominated layer is so thin

RGBS WERNACIICHIG TCSDESHTRANSFER
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Von Karman

 the exact mathematical solution of the differential equations
describing the laminar flow of a fluid over a flat surface In
deriving the boundary layer thickness and the heat transfer
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Let us consider a control volume (CV) bounded by the two planes AB and
CD normal to the surface, a distance dx apart, and a parallel plane in the

free stream at a distance |I.
Let us consider unit width of plate in z-direction

Velocity
boundary layer

Figure 8.5 : Control Volume for Integral Momentum Conservation Analysis
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« Momentum flow across face AB into the CV In Is

= | puldy

(“3

1 il
— I pudy + ;{( J' /71130’)'](1’.\‘

X

0 0
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* Fluid entering across BD at the rate

i
= {i [ j oudy )dx
ax 0
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« Net x-momentum transfer
| = outflow — Inflow

" |
[ = jpu dy + — ¢ (Ipu:({r]d.\‘—jpu:dy

dx 4

—
>

(ﬁ/
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- For PEXIEL’M and the integrand | will be zero.
* We have to consider the integrand only within the limits fromy =0toy = w
There will be no shear across face BD outside the boundary layer

where LIS

dy

| x ’
PO — ( p + —pdx)(5 — T @X == “d—p dx — T, dx

U/

dx
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* By Newton’s second law of motion

* For flow over a flat plate the pressure gradient in the x-

direction, g
— can be neglected.
dx
5

Therefore, 5; j o 7 (uw — U )dy =T,
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 The above equation iIs often called von Karman's momentum
integral equation. Assuming a four-term polynomial for the
velocity distribution [3]

u(y)=a+by+cy’ +dy’

« \Where the constants are evaluated from the boundary conditions
> at
y=0,u=0andsoa=0

ou

=0
a})..

u=v=0and

y=o0,u%=u,_and Qﬁ:O

-
2/
UJ




From these conditions we find

=0b=— B g,
2 5 25

Substituting in Eq. (8.42)

3u, u, v
U=——"y——= y}
2.0 2 O

3
u 3y 1y
u 20 2(5)

x

Substituting Eq. (8.44) for the velocity distribution in the integral momentum

Ci )
dx

(puu — pu- )dy =T,
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Again,

Therefore,

When x=0,0 =0 and o oo(x) |

Aldg o 3 4.64

X (Rex )I/?_

U

where local Reynolds number Re = X

o0

Vv




Substituting for o from Eq. (8.50) in Eq. (8.46),

3u, (Rex )”2

= —
v = F DldAd

Dividing both sides by % pui

1/2p0u

Vv 1/2
C.=0647—(R
I5 U, x( ex)

The exact analysis gave us (Eq. (4.91))

0.664
Cf, - 1/2

(Re,)




Turbulent flow In a tube

* Flow In a tube can be laminar or turbulent, depending on the flow
conditions. Fluid flow Is streamlined and thus laminar at low
velocities, but turns turbulent as the velocity is increased beyond

such as
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* For flow in a circular tube, the Reynolds number is defined as

Vi PVD  pD ( m ) ~ 4m
% Tl n \pmwD/4, i

\-:
LU

(ﬁj

——
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* The hydraulic diameter is defined such that it reduces to ordinary
diameter D for circular tubes since

A, 4wD A
& )

Circular tubes: D, = D

Cenot
™

a¥

(/@
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 |In transitional flow, the flow switches between |laminar and
turbulent in a disorderly fashion.

Laminar Turbulent

\
A\

Dye trace

Vv

ave

0 shids Osrer
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