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Momentum and Energy equations

The Momentum Equations:

The differential forms of the equations of motion in the

velocity boundary layer are obtained by applying Newton’s

second law of motion to a differential control volume element in

the boundary layer.

Newton’s second law is an expression for momentum balance

and can be stated as the net force acting on the control volume

is equal to the mass times the acceleration of the fluid element

within the control volume, which is also equal to the net rate of

momentum outflow from the control volume.
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• The forces acting on the control volume consist of body forces that act

throughout the entire body of the control volume (such as gravity, electric,

and magnetic forces) and are proportional to the volume of the body, and

surface forces that act on the control surface (such as the pressure forces

due to hydrostatic pressure and shear stresses due to viscous effects)

and are proportional to the surface area.

• The surface forces appear as the control volume is isolated from its

surroundings for analysis, and the effect of the detached body is replaced

by a force at that location.

• pressure represents the compressive force applied on the fluid element by

the surrounding fluid, and is always directed to the surface.
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• Newton’s second law of motion for the control volume 

is

• where the mass of the fluid element within the control volume is

• Noting that flow is steady and two-dimensional and thus u 5 u(x, y), the 

total differential of u is
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• Then the acceleration of the fluid element in the x direction

becomes

• The forces acting on a surface are due to pressure and viscous

effects.

• In two-dimensional flow, the viscous stress at any point on an

imaginary surface within the fluid can be resolved into two

perpendicular components:

– One normal to the surface called Normal Stress

– Another along the wall surface called Shear Stress.HEAT & MASS TRANSFER                
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• The normal stress is related to the velocity

gradients

• that are much smaller than to which shear

stress is related.

• Then the net surface force acting in the x-direction

becomes
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This is the relation for the momentum balance in the x-direction, and is

known as the x-momentum equation.

If there is a body force acting in the x-direction, it can be added to the right

side of the equation provided that it is expressed per unit volume of the fluid.
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• Conservation of Energy Equation The energy balance for any system

undergoing any process is expressed as Ein - Eout = ∆Esystem, which

states that the change in the energy content of a system during a

process is equal to the difference between the energy input and the

energy output.

• During a steady-flow process, the total energy content of a control

volume remains constant (and thus ∆ Esystem = 0), and the amount of

energy entering a control volume in all forms must be equal to the

amount of energy leaving it.

• Then the rate form of the general energy equation reduces for a

steady-flow process to Ein - Eout = 0.
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• Noting that energy can be transferred by heat, work, and mass only, the

energy balance for a steady-flow control volume can be written explicitly

as

• Energy is a scalar quantity, and thus energy interactions in all directions

can be combined in one equation.
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• Mass flow rate of the fluid entering the control

volume from the left is ρu(dy·1), the rate of energy

transfer to the control volume by mass in the x-

direction is, from
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• The energy transfers by heat and mass flow associated with a

differential control volume in the thermal boundary layer in

steady two- dimensional flow.
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• Repeating this for the y-direction and adding the results, the net

rate of energy transfer to the control volume by mass is

determined to be
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• The net rate of heat conduction to the volume element 

in the x-direction is

• Repeating this for the y-direction and adding the results, the net 

rate of energy transfer to the control volume by heat conduction 

becomes
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• Then the energy equation for the steady two-

dimensional flow of a fluid with constant properties and

negligible shear stresses is obtained by

• which states that the net energy convected by the fluid out of the

control volume is equal to the net energy transferred into the

control volume by heat conduction.
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• When the viscous shear stresses are not negligible, their effect is 

accounted for by expressing the energy equation as

• where the viscous dissipation function Φ is obtained after a 

lengthy analysis
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• For the special case of a stationary fluid, u = v = 0, the energy 

equation reduces, as expected, to the steady two-dimensional 

heat conduction equation,
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ANALOGIES BETWEEN MOMENTUM AND 

HEAT TRANSFER

• In forced convection analysis, we are primarily interested in the

determination of the quantities Cf (to calculate shear stress at the

wall) and Nu (to calculate heat transfer rates).

• Therefore, it is very desirable to have a relation between Cf and

Nu so that we can calculate one when the other is available.

Such relations are developed on the basis of the similarity

between momentum and heat transfers in boundary layers, and

are known as Reynolds analogy and Colburn analogy.
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Reynolds – Colburn Analogy

• Reconsider the non-dimensionalized momentum and energy

equations for steady, incompressible, laminar flow of a fluid with

constant properties and negligible viscous dissipation
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• which are exactly of the same form for the dimensionless

velocity u* and temperature T*. The boundary conditions

for u* and T* are also identical.

• Therefore, the functions u* and T* must be identical, and

thus the first derivatives of u* and T* at the surface must

be equal to each other,
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• Then we have

Where, 
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• Reynolds analogy is of limited use because of the restrictions Pr

= 1 and δP*/ δ x* = 0 on it, and it is desirable to have an analogy

that is applicable over a wide range of Pr. This is done by adding

a Prandtl number correction.

• The friction coefficient and Nusselt number for a flat plate were

determined in

• Taking their ratio and rearranging give the desired relation,

known as the Modified Reynolds Analogy Or Colburn

Analogy
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TURBULENT BOUNDARY LAYER
• Consider the parallel flow of a fluid over a flat plate,. Surfaces

that are slightly contoured such as turbine blades can also be

approximated as flat plates with reasonable accuracy.

• The x-coordinate is measured along the plate surface from the

leading edge of the plate in the direction of the flow, and y is

measured from the surface in the normal direction.

• The fluid approaches the plate in the x-direction with a uniform

velocity V, which is practically identical to the free-stream velocity

over the plate away from the surface
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• The velocity of the particles in the first fluid layer

adjacent to the plate becomes zero because of the no-

slip condition.

• This motionless layer slows down the particles of the

neighboring fluid layer as a result of friction between

the particles of these two adjoining fluid layers at

different velocities.

• As a result, the x-component of the fluid velocity, u,

varies from 0 at y = 0 to nearly V at y = δ.
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• The region of the flow above the plate bounded by δ in

which the effects of the viscous shearing forces caused

by fluid viscosity are felt is called the velocity boundary

layer.

• The boundary layer thickness, δ, is typically defined as

the distance y from the surface at which u 5 0.99V.

• The hypothetical line of u = 0.99V divides the flow over a

plate into two regions: the boundary layer region, in which

the viscous effects and the velocity changes are

significant, and the Irrotational flow region, in which the

frictional effects are negligible and the velocity remains

essentially constant.
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MIXING LENGTH CONCEPT

• Mixing length is defined as that distance in the

transverse direction which must be covered by a lump

of fluid particle travelling with its original mean velocity

in order to make the difference between its velocity

and the velocity of the new layer equal to the mean

transverse fluctuation in the turbulent flow.

• The concept of mixing length is similar to the mean

free path used in kinetic theory of gases. Prandtl

proposed that when there is mixing between two fluid

elements; there is complete exchange of momentum.
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• The turbulent shear stress can only be calculated

when the fluctuating components are known. But since

they are very difficult to measure Prandtl presented the

mixing length theory which can measure turbulent

shear stress in terms of measurable quantity.
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• Consider two fluid masses separated by mixing length (l).

• The lower mass has an instantaneous velocity u̅ ̅ and a

velocity fluctuation.

• The upper mass has an instantaneous Velocity u̅+u′u̅+u′

but it does not have any velocity fluctuation in the Y

direction.

• By virtue of velocity fluctuation v' the lower mass moves

towards the upper mass and exchanges its momentum

completely.
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Turbulence Modelling

• The instantaneous variables are decomposed into MEAN and

FLUCTUATING quantities:

• where the mean values are obtained by averaging over a time

scale, dt, which is long compared to that of turbulent motion, and

in unsteady problems small compared with the unsteadiness of

the mean motion.
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• The definitions of instantaneous quantities are substituted into the

equations of the INSTANTANEOUS MOTION, which are then averaged to

produce the equations of the MEAN MOTION.

• For an incompressible flow, the AVERAGED equations are:
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• The statistical-averaging process has introduced unknown

turbulent correlations into the mean-flow equations which

represent the turbulent transport of momentum, heat and mass -

the REYNOLDS STRESSES and FLUXES.

In general, there are:

• 6 Reynolds stress components: -uiuj

• 3 Reynolds enthalpy flux components: -uih

• 3 Reynolds mass flux components: -uic
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• A TURBULENCE MODEL can be described as a set of relations

and equations needed to determine the unknown turbulent

correlations that have arisen from the averaging process.

• Turbulence models of various complexity have been developed,

and with very few exceptions, they can be classified as EDDY-

VISCOSITY MODELS or REYNOLDS-STRESS MODELS.

• In EDDY-VISCOSITY MODELS, the unknown correlations are

assumed to be proportional to the spatial gradients of the

quantity they are meant to transport.

• In REYNOLDS-STRESS MODELS, the unknown correlations

are determined directly from the solution of differential transport

equations in which they are the dependent variables.
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Classification Of Turbulence Models

• ZERO-EQUATION MODELS- Vs and Ls are calculated directly from the 

local mean flow quantities (e.g. Prandtl's mixing-length model).

• ONE-EQUATION MODELS- Vs is calculated from a suitable transport 

equation, usually the turbulent kinetic energy, KE, and the length scale, Ls, 

is prescribed empirically (e.g. Prandtl's k-L model).

• TWO-EQUATION MODELS- Vs and Ls are both calculated from transport 

equations, usually KE and its dissipation rate EP.

• REYNOLDS-STRESS/FLUX TRANSPORT MODELS- These are models 

involving the solution of transport equations for the Reynolds stresses and 

fluxes, together with a transport equation for the length scale, usually EP.

• ALGEBRAIC STRESS/FLUX MODELS- These models simplify the 

stress/flux transport equations to provide algebraic expressions for the 

turbulent correlations, which are then solved together with a 2-equation 

model. HEAT & MASS TRANSFER                
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k-ε model

• The k equation is:

• The ε equation can be obtained from the NS equations 

but it contains several undetermined quantities; it is 

therefore derived “mimicking” the k equation
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• The eddy viscosity is obtained as:

• There are 5 free constants

• The constants can be determined studying simple flows:
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Structure of the Turbulent Boundary Layer

• At High Reynolds number the viscous dominated layer is so thin 

that it is very difficult to resolve itHEAT & MASS TRANSFER                
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Von Karman 

• the exact mathematical solution of the differential equations

describing the laminar flow of a fluid over a flat surface in

deriving the boundary layer thickness and the heat transfer

coefficient.

• To circumvent the problems involved in solving the partial

differential equations of the boundary layer, Theodore von

Karman suggested the approximate integral method in which he

considered a control volume that extends from the wall to beyond

the boundary layer.

•
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• Let us consider a control volume (CV) bounded by the two planes AB and

CD normal to the surface, a distance dx apart, and a parallel plane in the

free stream at a distance l.

• Let us consider unit width of plate in z-direction

HEAT & MASS TRANSFER                

S.ARUNKUMAR / APME



• Momentum flow across face AB into the CV in is

• Similarly, momentum flow across face CD is
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• Fluid entering across BD at the rate

• This quantity is the difference between the rate of flow leaving across CD

and that entering across AB. Since the fluid entering across BD has a

velocity component in the x-direction equal to u , the flow of x-

momentum across the upper face into the CV is
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• Net x-momentum transfer

I = outflow – inflow
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• For and the integrand I will be zero. 

• We have to consider the integrand only within the limits from y = 0 to y = 

There will be no shear across face BD outside the boundary layer

where

• A shear force t w acts at the fluid-solid interface, and there will be 

pressure forces acting on faces AB and CD. Net forces acting on the CV 

are
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• By Newton’s second law of motion

• For flow over a flat plate the pressure gradient in the x-

direction,
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• The above equation is often called von Karman’s momentum

integral equation. Assuming a four-term polynomial for the

velocity distribution [3]

• Where the constants are evaluated from the boundary conditions

: at
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Turbulent flow in a tube

• Flow in a tube can be laminar or turbulent, depending on the flow

conditions. Fluid flow is streamlined and thus laminar at low

velocities, but turns turbulent as the velocity is increased beyond

a critical value.

• Transition from laminar to turbulent flow does not occur

suddenly; rather, it occurs over some range of velocity where the

flow fluctuates between laminar and turbulent flows before it

becomes fully turbulent. Most pipe flows encountered in practice

are turbulent.

• Laminar flow is encountered when highly viscous fluids such as

oils flow in small diameter tubes or narrow passages.
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• For flow in a circular tube, the Reynolds number is defined as

• where Vavg is the average flow velocity, D is the diameter of the

tube, and n 5 m/r is the kinematic viscosity of the fluid.

• For flow through noncircular tubes, the Reynolds number as well

as the Nusselt number, and the friction factor are based on the

hydraulic diameter Dh defined as
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• The hydraulic diameter is defined such that it reduces to ordinary

diameter D for circular tubes since

• This is because the transition from laminar to turbulent flow also

depends on the degree of disturbance of the flow by surface

roughness, pipe vibrations, and the fluctuations in the flow
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• In transitional flow, the flow switches between laminar and

turbulent in a disorderly fashion.

• It should be kept in mind that laminar flow can be maintained at

much higher Reynolds numbers in very smooth pipes by

avoiding flow disturbances and tube vibrations. In such carefully

controlled experiments, laminar flow has been maintained at

Reynolds numbers of up to 100,000.HEAT & MASS TRANSFER                
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THANK YOU
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