

VECTOR CALCULUS

Scalar quantity ,

A scalar quantity is that which has magnitude and is not related to any direction

Vector quantity!

A vector quantity is that which has both magnitude and disrection.

Scalar point function!

If cornesponding to each point P of a region R there corresponds a scalar denoted by $\varphi(P)$ or $\varphi(x_1y_1y_1)$ the φ is said to be a scalar point function for the region R.

Example!

The temporature $\psi(p)$ at any point p of a body occupying a contain request is a scalar point function.

Vector point function:

The corresponding to each point P of a region R, those Corresponds a vector denoted by FCP) then F is said to be a vector point function for the Region R.

Example: The acceleration FCP) of a positive at any time t orapying the position P in a contain region is a vector point function.

Vector Differential operator!

The vector differential operator of is defined as.

Gradient of a scalar point function:

let $g(x_1y_1y_1)$ be a scalar point function and is

Continuously differentiable then the vector

is called the gradient of φ and is written as

$$\varphi$$
 is, φ $\varphi = \nabla \varphi$

Note:

1. $\nabla \varphi$ defines a vector field

2. $\nabla \phi = \phi \nabla$. There will be no '. ' or 'x' between ϕ and ∇ .

Proporties of Gradient:

1. If f and g are two scalar point functions

then, $\nabla (1 \pm 9) = \nabla F \pm \nabla 9$

or good (f ± g) = grad f ± grad g

2. If f and g are two scalar point functions than
$$\nabla (fg) = f \nabla g + g \nabla f$$
(61) grad (fg) = $f(grad g) + g(grad f)$

3. If if and of agre two scalar points functions then,

$$\nabla \left(\frac{f}{g}\right) = \frac{9\nabla f - f \nabla g}{g^2} \quad \text{where } g \neq 0$$

(08)
$$grad(\frac{f}{g}) = \frac{g(grad f) - f(grad g)}{g^2}$$

4. Gradient of a constant is zero. $\nabla \phi = 0.$

Problems!

1. Find grady where
$$y = x^2 + y^2 + 3^2$$

$$\nabla \varphi = \overrightarrow{v} \frac{\partial \varphi}{\partial x} + \overrightarrow{j} \frac{\partial \varphi}{\partial y} + \overrightarrow{k} \frac{\partial \varphi}{\partial z}$$

$$= \overrightarrow{v} \frac{\partial}{\partial x} \left(x^2 + y^2 + 3^2 \right) + \overrightarrow{j} \frac{\partial}{\partial y} \left(x^2 + y^2 + 3^2 \right)$$

$$= \overrightarrow{v} \left(2x \right) + \overrightarrow{j} \left(2y \right) + \overrightarrow{k} \left(23 \right)$$

$$\nabla \varphi = 2x \overrightarrow{v} + 3y \overrightarrow{j} + 23 \overrightarrow{k}$$

a. Find grad of if $\phi = xy3$ at (1,1,1) $\nabla \phi = i\frac{\partial \phi}{\partial x} + j\frac{\partial \phi}{\partial y} + k\frac{\partial \phi}{\partial y}$

$$\nabla \varphi = \frac{\partial}{\partial x} (xy3) + \frac{\partial}{\partial y} (xy3) + \frac{\partial}{\partial y} (xy3) + \frac{\partial}{\partial x} (xy3)$$

$$= \frac{\partial}{\partial x} (xy3) + \frac{\partial}{\partial y} (xy3) + \frac{\partial}{\partial y} (xy3) + \frac{\partial}{\partial y} (xy3)$$

1)

$$\nabla \varphi_{(1,1,1)} = \vec{i} + \vec{j} + \vec{k}$$
3 Find quad in where $\varphi = 3x^{2}y - y^{3}y^{2}$ at $(1,1,1)$

$$\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial y}$$

$$= \vec{i} \frac{\partial \varphi}{\partial x} (3x^{2}y - y^{3}y^{2}) + \vec{j} \frac{\partial \varphi}{\partial y} (3x^{2}y - y^{3}y^{2})$$

$$= \vec{i} (6xy) + \vec{j} (3x^{2} - 3y^{2}y^{2}) + \vec{k} (-2y^{3}y^{2})$$

$$= \vec{i} (6xy) + \vec{j} (3x^{2} - 3y^{2}y^{2}) + \vec{k} (-2y^{3}y^{2})$$

$$= \vec{i} (-2x^{2}y^{2} + y^{2}y^{2}) + \vec{k} (-2y^{3}y^{2})$$

$$= \vec{i} - 3\vec{k}$$

$$\nabla \varphi_{(1,1,1)} = 6\vec{i} + \vec{k} (-2)$$

$$= 6\vec{i} - 3\vec{k}$$

$$\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial y}$$

$$= \vec{i} \frac{\partial \varphi}{\partial x} \left[\log (x^{2}y^{2} + y^{2}) + \vec{j} \frac{\partial \varphi}{\partial y} (\log (x^{2}y^{2} + y^{2} + y^{2})) + \vec{k} \frac{\partial \varphi}{\partial y} (\log (x^{2}y^{2} + y^{2} + y^{2}))$$

$$= \vec{i} \frac{\partial \varphi}{\partial x} \left[\log (x^{2}y^{2} + y^{2} + y^{2}) + \vec{k} \frac{1}{x^{2}y^{2} + y^{2}} (2x) + \vec{k} \frac{1}{x^{2}y^{2} + y^{2}} (2x) + \vec{k} \frac{1}{x^{2}y^{2} + y^{2}} (2x)$$

$$= \frac{2}{x^{2}y^{2} + y^{2}} \left[x \vec{i} + y \vec{j} + y \vec{k} \right]$$

$$\nabla \varphi = \frac{2}{x^{2}y^{2} + y^{2}} \left[x \vec{i} + y \vec{j} + y \vec{k} \right]$$

5) Find
$$\nabla(\log x)$$

$$\nabla \varphi = \frac{1}{2} \frac{\partial \varphi}{\partial x} + \frac{1}{2} \frac{\partial \varphi}{\partial y} + \frac{1}{2} \frac{\partial \varphi}{\partial y}$$

$$\nabla(\log x) = \frac{1}{2} \frac{\partial \varphi}{\partial x} + \frac{1}{2} \frac{\partial \varphi}{\partial y} + \frac{1}{2} \frac$$

∇(\frac{1}{4}) = -\frac{7}{13} = -\frac{2}{13}

iii)
$$\nabla Y^{n} = \left(\overrightarrow{7} \frac{\partial Y^{n}}{\partial x} + \overrightarrow{J} \frac{\partial Y^{n}}{\partial y} + \overrightarrow{R} \frac{\partial Y}{\partial y} + \overrightarrow{R}$$

Level Surjace: Important Results

Unit Normal

A unit normal to the glace surface of at point is 79

the point is 79

Directional Desivolture:

The discursional documentive of op in the discertion

at is quien by

 $\nabla \varphi \cdot \frac{\partial}{\partial x}$ (or) $\nabla \varphi \cdot \hat{\eta}$ where $\hat{\eta} = \frac{\partial}{\partial x}$

The distributed destrotive is manimum in the

discurion of the normal to the given surface.

Its manimum value is 1791

Angle between two Surjaces!

$$\cos \theta = \frac{\nabla \varphi_1 \cdot \nabla \varphi_2}{|\nabla \varphi_1| |\nabla \varphi_2|}$$

Note!

If the swifaces cut orthogonally then,

10 - FU (*) 177

VP1. 1792 =0.

Padolems:

1. Find a unit normal to the surface xy+222=4 at (2,-2,3)

soln:
$$\varphi = x^2y + 2xz - 4$$

$$\forall \varphi = \overrightarrow{i} \frac{\partial \varphi}{\partial x} + \overrightarrow{j} \frac{\partial \varphi}{\partial y} + \overrightarrow{k} \frac{\partial \varphi}{\partial z}$$

$$= \overrightarrow{i} \frac{\partial}{\partial x} (x^2y + 2zx - 4) + \overrightarrow{j} \frac{\partial}{\partial y} (x^2y + 2xz - 4)$$

$$\nabla \varphi_{(2_1-2_13)} = \vec{c}(-8+6) + \vec{j}(4) + \vec{k}(4)$$

$$= -2\vec{c} + 4\vec{j} + 4\vec{k}$$

Unit normal to the gluen surface at (2,-2,3) $=\frac{\nabla \varphi}{|\nabla m|}=\frac{-2\vec{1}+4\vec{1}+4\vec{k}}{L}$

2. Find the unit normal to $\tilde{z}-y^2+z=0$ at (1,-1/2)

solution:

$$\begin{aligned}
\varphi &= \alpha^{2} - y^{2} + z - 2 \\
\nabla \varphi &= \vec{r} \frac{\partial \varphi}{\partial x} + \vec{J} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial y} \\
&= \vec{r} \frac{\partial \varphi}{\partial z} \left(x^{2} + y^{2} + z - 2 \right) + \vec{J} \frac{\partial \varphi}{\partial y} \left(x^{2} - y^{2} + z - 2 \right) \\
&+ \vec{k} \frac{\partial \varphi}{\partial z} \left(x^{2} - y^{2} + z - 2 \right) \\
&= \vec{r} \left(2x \right) + \vec{J} \left(-2y \right) + \vec{k} \left(1 \right) \\
&= ax\vec{l} + \vec{k} - ay\vec{J}
\end{aligned}$$

$$\nabla \varphi_{(1,-1,2)} = \hat{t}(2\pi) - \hat{j}(2\pi) + \hat{k}(1)$$

$$= 2\hat{i} + 2\hat{j} + \hat{k}$$

$$|\nabla \varphi| = \int 2^{2} + (+2)^{2} + |^{2} = \int 4 + 4 + 1$$

$$= 49$$

$$= 3.$$
3. Find the unit vector normal to $x^{2} + 2y + z^{2} = 4$

$$\Delta t (1,-1,2)$$

$$\nabla \varphi = \hat{i} \xrightarrow{\partial Q} + \hat{j} \xrightarrow{\partial Q} + \hat{k} \xrightarrow{\partial Q}$$

$$= i(2x + y) + \hat{j}(x) + \hat{k}(2x)$$

$$\nabla \varphi_{(1,-1,2)} = \hat{i}(2(1) + (-1)) + \hat{j}(3) + \hat{k}(2(2))$$

$$= \hat{i} + \hat{j} + 4\hat{k}$$

$$|\nabla \varphi| = \sqrt{1 + 1 + 16} = \sqrt{18}$$

Griven:
$$\vec{a} = \vec{i} + \vec{j}$$

$$|\vec{a}| = \sqrt{\vec{i}^2 + \vec{i}^2} = \sqrt{2}$$

$$\hat{n} = \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{i}^2 + \vec{j}}{\sqrt{2}}$$

Prectonal derivative =
$$\nabla \varphi \cdot \hat{\eta}$$

= $2(\vec{l}+\vec{j}+\vec{k}) \cdot \frac{\vec{l}+\vec{j}}{\sqrt{2}}$
= $2(1+1)$
= $2\sqrt{2}$

(1,1,1) in the disectional description of $3x^2 + 2y - 3y$ at $(1,1,1) \text{ in the disection all } +2\vec{j} - \vec{k}$ $(2x^2 + 2y - 3y) + \vec{j} = (3x^2 + 2y - 3y) + \vec{k} = (3x^2 + 2y - 3y)$ $(3x^2 + 2y - 3y) + \vec{j} = (3x^2 + 2y - 3y) + \vec{k} = (3x^2 + 2y - 3y)$

$$= \vec{i} (6x) + \vec{j} (2) + \vec{k} (-3)$$

$$= 6x\vec{i} + 2\vec{j} - 3\vec{k}$$

$$\nabla \varphi_{(1/11)} = 6\vec{i} + 2\vec{j} - 3\vec{k}$$

Given: $\vec{a} = a\vec{i} + a\vec{j} - \vec{k}$ $|\vec{a}| = \sqrt{a^2 + 2^2 + (-1)^2} = \sqrt{9} = 3$

$$\frac{\vec{d}}{|\vec{d}|} = \frac{3\vec{i} + 2\vec{j} - \vec{k}}{3}$$

$$\nabla \varphi \cdot \hat{\Lambda} = \frac{2\vec{i} + 2\vec{j} - \vec{k}}{3} \cdot 6\vec{i} + 2\vec{j} - 3\vec{k}$$

$$= \frac{12 + 4 + 3}{3} = \frac{19}{3}$$

7. What be the greatest rate of encrosse of
$$\varphi = 243^2$$

at $(1,0,3)$?

Let $\varphi = 243^2$
 $\nabla \varphi = \frac{1}{100} \frac{1}{100} (243^2) + \frac{1}{100} \frac{1}{100} (243^2) + \frac{1}{100} \frac{1}{100} (243^2)$
 $= \frac{1}{100} (243^2) + \frac{1}{100} (243^2) + \frac{1}{100} (243^2)$
 $= \frac{1}{100} (243^2) + \frac{1}{100} (243^2) + \frac{1}{100} (243^2)$

Manimum (or) Greatest rate $= |\nabla \varphi| = |\nabla \varphi| = |\nabla \varphi|$

8. In what disrection from the point $(1, -1, 2)$ is the disrectional derivative of $\varphi = 2^2y^2y^2$ a maximum? What is the magnitude of this manimum? $(1, -1, 2)$ is the $(1, -1,$

First the disectional destrative of
$$\rho = xy^2s^3$$
 at the point $(1,1,1)$ along the normal to the surface $x^2 + xy + s^2 = 3$ at the point $(1,1,1)$ $\forall \rho$ is normal to the surface $x^2 + xy + y^2 = 3$ $\forall \rho = i \frac{3\rho}{3x} + j \frac{3\rho}{3y} + k \frac{3\rho}{3y}$ $= i \frac{3\rho}{3x} + j \frac{3\rho}{3y} + k \frac{3\rho}{3y}$ $= i \frac{3\rho}{3x} + j \frac{3\rho}{3y} + k \frac{3\rho}{3y} +$

Find the angle between the surfaces
$$x^2 + y^2 + 3^2 = 5$$
.

and $x^2 + y^2 + 3^2 - 8x = 5$ at $(0,1,2)$.

Let $Q_1 = x^2 + y^2 + 3^2 - 5$: $Q_2 = x^2 + y^2 + 3^2 - 2x - 5$.

 $\frac{\partial Q_2}{\partial x} = 2x$
 $\frac{\partial Q_2}{\partial y} = 2y$
 \frac

11. Find the angle between the surplaces
$$x \log 3 = y^2 - 1$$

and $x^4y = 2 - y$ at the point $(1,1,1)$ $x = y^2 - 1$
 $P_1 = x \log 3 - y^2 + 1$; $P_2 = x^2 y - 2 + y$ at $(1/1,1)$
 $\frac{3P_1}{3x} = \log y$
 $\frac{3P_2}{3x} = 2xy$
 $\frac{3P_1}{3y} = \frac{x}{3y}$
 $\frac{3P_2}{3y} = x^2$
 $\frac{3P_1}{3y} = \frac{x}{3y}$
 $\frac{3P_2}{3y} = 1$
 $P_1 = \log 3i + 3y + x^2 + x^2$

18. First the angle bothwen the seques
$$x^{\frac{1}{2}} + \frac{9^{\frac{1}{2}}}{9^{\frac{1}{2}}} = 9$$

3= $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 3$ at $(2, 1, 2)$
 $P_1 = x^{\frac{1}{2}} + y^{\frac{1}{2}} = 9$; $P_2 = x^{\frac{1}{2}} + y^{\frac{1}{2}} = 2 - 3$
 $P_1 = x^{\frac{1}{2}} + y^{\frac{1}{2}} = 9$; $P_2 = x^{\frac{1}{2}} + y^{\frac{1}{2}} = 2 - 3$
 $P_1 = 2x$ $\frac{2p}{2x} = 2x$ $\frac{2p}{2x} = 2x$ $\frac{2p}{2x} = 2x$ $\frac{2p}{2x} = -1$
 $P_1 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} = x$
 $P_2 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_3 = 2x$ $\frac{2p}{2x} = -1$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} + 2y^{\frac{1}{2}} - x^{\frac{1}{2}}$
 $P_4 = 2x^{\frac{1}{2}} + 2y^{\frac{1}{2}} +$

14. Find the values of a and b so that the surface ans-by=z = (a+3) n2 and Ax2y-Z=11 may cut orthogonally at (2,-1,-3) Let $\varphi_1 = ax^3 - by^2z - (a+3)x^2$; $\varphi_2 = 4x^2y - z^3 - 11$ ∇q= = 1 (3ax2-2(a+3)x)+1 (-6b)+1 (-b) ∇Φ1(2,-1,-3) = (12a-4a-12) + (-6b)+k (-b) = = (8a-12) + (-66)+ (-6) ∇Q2= ? (8xy)+](4x2)+R(-3z2) ∇92(20-1,-3) = -162 +16]- 27R .. The surface cuts orthogonally TQ1 - TQ0 =0 [(8a-12)]-66]-bk][-16]+16]-27k]=0 (8a-12)(-16) - (6b) (16) + 27b =0 -128a +192-966+276=0. -128a-696+192=0 128 a+696=192 >0 : The point (2,-1,-3) lie on 0, 8a +3b -4(a+3) =0 8a+ 8b - 4a+12 =0 + 4a+8b =12=10

(a)
$$\frac{128a}{500} + \frac{169b}{500} = \frac{162}{500}$$
 $\frac{128a}{500} + \frac{169b}{500} = \frac{27b}{30}$
 $3ba = -84$
 $a = \frac{-84}{3b} = \frac{-7}{3}$

∴ $a = \frac{-7}{3}$

Cub a $\sin a$ $\frac{1}{5} + \frac{1}{3} + 3b = 12$
 $\frac{3b}{3} + \frac{28}{3} = \frac{3}{3}$
 $\frac{3b}{500} = \frac{30}{3} + \frac{30}{500} + \frac{30}{500$