Overview of Computing Systems

* RISC
— ARM stands for Advanced RISC Machine
e RISC = Reduced Instruction Set Computer
— Earliest work began in the late 60’s/early 70’s
* RISC/ARM goals
— Allinstructions executed in single cycle
— Allinstructions were the same size and had fixed format (32 bits in this case)
— Simple to decode instructions
— Easier to validate

— Load/Store architecture. Data in external memory accessed with explicit
instructions. All other operations (adds, subtracts, logic, etc) use only registers
on the processor.

* Feature creep

— Although it is a “reduced” instruction set, many instructions have been keeping
up with the need for more demanding algorithms.

— For instance, 31 instructions in Berkeley RISC-1, 46 in the second ARM
processor, up to several hundred now.




Widespread Use Of ARM Today

e More than 10 billion ARM processors shipped
so far. '

— Digital Cameras
— Anti-lock disc brakes

— Gameboy

Apple devices
— Cell phones (Android)
— S0 many more

EE{(U]WV )f///ﬁ 17

SisUNG s

Cortex-M3 Architecture

Microcontroller System bus
A A A A A A
Arme Cortex™-M3
processor P
A A A ) Input [E=
PPB ports [<—
Y Y
InternaI|NV|C out pult |
i —>
peripherals ports >
YVYYVY
Instructions
Data
) Flash ROM TV Y RAM
ICode bus DCode bus

e Harvard Architecture: Separate data and instruction buses

* Cortex-M3 instruction set combines high performance typical of
32 bit processor with code density of 8 and 16 bit controllers

* Each 8-bit byte has unique address meaning the processor can
read or write 8, 16, or 32 bit data




Features

e Some features visible in the previous slide
e 32 bit core

— 32-bit address space

— 32-bit registers

— 32-bit shifter and ALU
— 32-bit memory transfer

Programmer’s Model

Registers: The most basic storage area on the chip. Can be used for data,
timer, counter, addresses, etc.

— 30 general-purpose registers (for loads and stores)
— 6 status registers
— A program counter
— 37 total registers
At one time...
— 15 general purpose registers (r0-r14)
— One or two status registers
— Program counter (r15 or PC)

All registers are 32 bits wide

One thing many fail to understand is that these registers themselves occupy memory on
the device

— For instance, registers on ARM7TDMI are between 0x10000000-0x10000FFF




Registers

e What is a register?
* High speed storage inside the processor
* RO0-R12 are general purpose registers, contain either data or addresses
e R13is stack pointer, points to top element of stack
e R14is link register, used to store return location for functions (subroutines)
e R15 s the PC, points to the next instruction being fetched from memory

RO 0x0000.0000
Rl 256k Flash
RZ ROM | 0x0003.FFFF
R4 0x2000.0000
General R5 64k RAM
pUEeEs R6 0x2000.FFFF
oS 8 0x4000.0000
RS 1/0 ports N
R10 Ox41FF.FFFF
R11
Stack pointer RlSFz(ll\ﬁSP) LU OxE00$.0000
Link register | R14 (LR) PPB OXE004.0FFF
Program counter | R15 (PC)

Special Purpose Registers

R13, the Stack Pointer:

— Holds the address of the stack in memory

— Unique stack pointer in all modes (except system- shares with user)
R14, the Link Register:

— Subroutine return address link register

— Unique link register in all modes (except system-shares with user)
R15, Program counter (PC)

— PC holds address of instruction being fetched.

— Usually only used for long memory jumps or exception recovery
Current Program Status Register (CPSR)

— “State of the machine”

— Allows programs to recover from exceptions or branch on results of an
operation




Instruction Execution

» Single thread, pipelined architecture

e At any given time (clock cycle)

e one instruction being fetched

e another being decoded

e another being executed

Pipelining Instructions

1 | fetch decode | execute
2 | fetch | decode execute
3 fetch decode execute
instruction
time

e Fetch: Instruction fetched from memory
* Decode: Decoding of registers used in instruction

* Execute: Registers read from Register Bank, shift and ALU

operation occur, write registers back to register bank

e PC always contains the address of the instruction currently
being fetched (2 instructions past what is currently being

executed). During pipelining, the pc increments twice
before instruction one executes




Programmer’s Model-Pipeline

PC
Fetch Instruction fetched from memory
v
PC-4 Decoding of registers used in
Decode ; ;
instruction
PC-8 ¢ Register(s) read from register bank
Execute Shift and ALU operation
Write register(s) back to register bank
Pipelining Example
* code ety
SUBEQ 1,R1, #4
SUB R1,R1,%7
ADDMI 1,R1,#1
ADDS +R1,#2
ADDEQ +R1,#3
pN B DN
° . I . Fetch Decode Execute
PIpelne LDR R1, =0x01 - -
ADD R1,R1,#4 LDR R1,=0x01 -
SUBEQ R1,R1,#4 ADD R1,R1,#4 LDR R1,=0x01
SUB R1,R1,#7 SUBEQ R1,R1,#4 ADD R1,R1,#4
ADDMI R1,R1,#10 SUB R1,R1,#7 SUBEQ R1,R1,#4
ADDS R1,R1,#2 ADDMI R1,R1,#10 SUB R1,R1,#7

ADDEQR1,R1,#3

ADDS R1,R1,#2

ADDMI R1,R1,#10

B DN

ADDEQ R1, R1,#3

ADDS R1,R1,#2

B DN

ADDEQR1, R1,#3

B DN




Number Representation

e Hex represented with prefix ‘Ox’
— Ex. OxOFC1AB22

e Binary represented with suffix ‘y’
— Ex. 11010010y

e Decimal requires no prefix or suffix.

Closed Brackets

e Closed brackets, [ ], treat what they contain
as an address.

 Ex. Access data stored at memory

LDR r1, =dataloc ;load the 32 bit address in r1

LDR r2, [r1] ; rl contains an address, this loads r2 with what is stored at the address




Program Status Register Format

Condition

code flags Reserved Control bits
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N[zlclv]-[-] ] || F [T IMaM3m2M1|Mo
Overflow Mode bits
Carry or borrow or extend State bit
Zero FIQ disable
Negative or less than IRQ disable

* |/F bit:

— Active low interrupt set
T bit:
— Set to 1 if THUMB mode (uses 16 bit instructions)

Conditional Execution

— Most instruction sets only allow branches
to be taken conditionally.
e ALL ARM instructions have a condition field

that determines whether or not the instruction
would be executed.

* Instructions that are not executed take up only
1 cycle - could be an advantage for long code.

* Frequently less overhead than the usual branch
or subroutine jump.

e Ex. ADDEQO, r2,r5;ifZflag=1, rO =r2+r5




Load and Store Instruction Format

315t bit represents N flag, 30t bit represents Z flag, 29t bit
represents C flag, 28t bit is the V flag

I,P,UW bits distinguish between different types of addressing

modes. Wont get too specific but indicates whether immediate or

non-immediate use of an operand

L: distinguishes between a load (L =1), or store (L= 0)

B: distinguishes between an unsigned byte (B=1) and a word (B=0)

Rn: specifies the base register used by addressing_mode (RO-R15)

Rd: specifies the register whose contents are to be loaded/stored

il 28 27 26 25 24 23 22 21 20 1% 16 15 12 11

cond 0 1|1 |P|UB|W|[L En Rd addressing_mode_specific

Operands

Operands are the “variables” passed to the instruction.

In many instructions, such as data processing
instructions, instructions perform a specific operation on
one or two operands.

Operand 1 is always a register.
Operand 2 is sent to the ALU by barrel shifter

Second Operand
e Shifted register

— Amount to shift is contained in 5 bit instruction field

* No overhead, shift is done free in one cycle

— Shift is stored in bottom byte of a non-register PC
» Takes extra cycle because ARM only has 2 read ports




Barrel Shifter

Using the Barrel Shifter:
The Second Operand

Operand Operand < ——- |* Register, optionally with shift
1 2 \ operation applied.
\\ * Shift value can be either be:
l \ * 5 bit unsigned integer
\ * Specified in bottom byte of
Bﬁ_l"l'&l \ another register.
Shifter \
v M| * Immediate value

* 8 bit number

* Can be rotated right through
an even number of
positions.

* Assembler will calculate

rotate for you from
constant.

Result -E]

Big Vs. Little Endian

Big Endian: Stores most significant byte of data at lower
memory address

Little Endian: Stores most significant byte of data at
higher memory address

Most ARM processors are biendian, can be configured to
handle both

Ex: Store 16 bit number Ox03ES at locations 0x2000.0850 and
0x2000.0851

Big Endian Little Endian
Address Data Address Data
0x2000.0850 0x03 0x2000.0850 OxE8
0x2000.0851 OxE8 0x2000.0851 0x03




