1. Using Newton's iterative method find the root between 0 and 1 of $\boldsymbol{x}^{\mathbf{3}}=\mathbf{6} \boldsymbol{x}-\mathbf{4}$ correct to two decimal places.
2.. Find the real positive root of $\mathbf{3 x}-\cos \mathbf{x}-\mathbf{1}=\mathbf{0}$ by Newton's method correct to6 decimal places
2. Find a root of $\boldsymbol{x} \log _{10} \boldsymbol{x}-\mathbf{1 . 2}=\mathbf{0}$ by Newton's method correct to 3 decimal places
3. Find a root of $\boldsymbol{x} \log _{10} \boldsymbol{x}-\mathbf{1 2 . 3 4}=\mathbf{0}$ start with $\mathrm{x}_{0}=10$ by Newton's method correct to 3 decimal places
4. Obtain Newton's Iterative formula for finding $\sqrt{\boldsymbol{N}}$ where \mathbf{N} is a positive real number. Hence evaluate $\sqrt{\mathbf{1 4 2}}$
5.

Find the iterative formula for finding the value of $\frac{1}{N}$ where N is a real number, using Newton -Raphson method.
Hence evaluate $\frac{\mathbf{1}}{\mathbf{2 6}}$ correct to 4 decimal places.
7. Solve the system of equations by (i) Gauss elimination method (ii) Gauss- Jordan method
$10 \mathrm{x}+\mathrm{y}+\mathrm{z}=12$
$2 x+10 y+z=13$
$x+y+z=7$
8. Solve the system of equations by (i) Gauss- Jacobi method (ii) Gauss- Seidal method
$27 x+6 y-z=85$
$x+y+54 z=110$
$6 x+15 y+2 z=72$
9.

Using Gauss- Jordan method, Find the Inverse of the matrix $\left[\begin{array}{ccc}2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5\end{array}\right]$
10.

Determine the Largest eigen value and the corresponding eigen vector of the matrix $\left[\begin{array}{ccc}2 & 2 & 3 \\ 2 & 1 & 1 \\ \mathbf{1} & 3 & 5\end{array}\right]$

