# SNS COLLEGE OF TECHNOLOGY <br> (An Autonomous Institution) <br> 19MAT202 - STATISTICS AND NUMERICAL METHODS <br> 16 Questions and Answers 

## PART B

1 Use Lagrange's interpolation, calculate the profit in the year 2000 from the following data

| Year | $:$ | 1997 | 1999 | 2001 | 2002 |
| :--- | :--- | :--- | :--- | :---: | :--- |
| Profit in lakhs of RS | $:$ | 43 | 65 | 159 | 248 |

2 Find the third degree polynomial of $f(x)$ satisfying the following data

| X | $:$ | 1 | 3 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Y | $:$ | 24 | 120 | 336 | 720 |

3 Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for

| X | $:$ | 0 | 1 | 2 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | $:$ | 2 | 3 | 12 | 147 |

4 Using Lagrange's interpolation formula find $y(10)$ given that $y(5)=12, y(6)=13, y(9)=14, y(11)=16$

5 Obtain the root of $f(x)=0$ by Lagrange's inverse interpolation given that $f(30)=-30$, $f(34)=-3, f(38)=3, f(42)=18$.

6 Find the missing term in the following table using Lagrange's interpolation
$\begin{array}{lllll}\mathrm{X}: 0 & 1 & 2 & 3 & 4\end{array}$
$\begin{array}{llllll}\mathrm{Y}: & 1 & 3 & 9 & - & 81\end{array}$
7 Using Newton's divided difference formula, find $u(3)$ given $u(1)=-26, u(2)=12, u(4)=$ $256, u(6)=844$.
$8 \quad$ Find $\mathrm{f}(\mathrm{x})$ as a polynomial in x for the following data by newton's divided difference formula:

| X | $:$ | -4 | -1 | 0 | 2 |
| :--- | :--- | :--- | :--- | :---: | ---: |
| $\mathrm{f}(\mathrm{x}):$ | 1245 | 33 | 5 | 9 | 1335 |

9 Find $f(8)$ by newton's divided difference formulae for the data:

| X | $:$ | 4 | 5 | 7 | 10 | 11 | 13 |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | $:$ | 48 | 100 | 294 | 900 | 1210 | 2028 |

Find $f^{\prime}(3)$ and $f^{\prime}(3)$ for one following data:
X : 3.0
3.2
3.4
3.6
3.8
4.0

$$
\begin{array}{llllll}
\mathrm{F}(\mathrm{X}):-14 & -10.032 & -5.296 & -0.256 & 6.672 & 14
\end{array}
$$

11 Compute $f^{\prime}(0)$ and $f^{\prime}(4)$ from the data

| X: | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Y: | 1 | 2.718 | 7.381 | 20.086 | 54.598 |

12 The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds .find the initial acceleration using the entire data

| Time $(\mathrm{sec})$ | $:$ | 0 | 5 | 10 | 15 | 20 |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| Velocity $(\mathrm{m} / \mathrm{sec})$ | $:$ | 0 | 3 | 14 | 69 | 228 |

13 Find the maximum and minimum value of $y$ tabulated below:

| $\mathrm{X}:$ | -2 | -2 | 0 | 1 | 2 | 3 | 4 |
| :---: | ---: | :--- | :--- | :---: | :--- | :---: | ---: |
| $\mathrm{Y}:$ | 2 | -.25 | 0 | -.25 | 2 | 15.75 | 56 |

14 Using trapezoidal rule, evaluate $\int_{-1}^{1} \frac{d x}{1+x^{2}}$ taking 8 intervals
15 Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ with $\mathrm{h}=\frac{1}{6}$ by trapezoidal rule.
16 Evaluate the integral $\int_{1}^{2} \frac{d x}{1+x^{3}}$ by using trapezoidal rule with two sub intervals.
17 Dividing the range into 10 equal parts, find the value of $\int_{0}^{\pi / 2} \sin x d x$ by (i) Trapezoidal rule (ii) Simpson's rule.
18 Using Simpson's one third rule evaluate $\int_{0}^{1} x e^{x} d x$ taking 4 intervals. Compare your result with actual value.

19 Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using (i) Trapezoidal rule (ii) Simpson's rule. Also check up result by actual integration.
By dividing the range into ten equal parts, Evalute $\int_{0}^{\pi \pi} \sin x d x$ by using (i) Trapezoidal rule (ii) Simpson's rule. Also check up result by actual integration.

