

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) 19MAT202 – STATISTICS AND NUMERICAL METHODS

16 Questions and Answers

PART B

1	Use Lagrange's interpolation, calculate the profit in the year 2000 from the following data								
	Year		:	1997	199	99	2001	2002	
	Profit in lak	hs of l	RS :	43	65		159	248	
2	Find the third degree polynomial of $f(x)$ satisfying the following data								
	X : 1		3	5	7				
	Y : 24	1	120	336	720				
3	Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for								
	X : ()	1		2	5			
	f(x) : 2	*	3	1	2	147			
4	Using Lagrange's interpolation formula find $y(10)$ given that $y(5)=12, y(6)=13, y(9)=14, y(11)=16$								
5	Obtain the root of $f(x) = 0$ by Lagrange's inverse interpolation given that $f(30) = -30$,								
	f(34) = -3, $f(38) = 3$, $f(42) = 18$.								
6	Find the missing term in the following table using Lagrange's interpolation								
	X : 0	1	2	3	4				
	Y: 1	3	9	-	81				
7	Using Newton's divided difference formula, find $u(3)$ given $u(1) = -26$, $u(2) = 12$, $u(4) = 256$, $u(6) = 844$.								
8	Find $f(x)$ as a polynomial in x for the following data by newton's divided difference formula:							wton's divided difference	
	X :	-4	-1	0 2	5				
	f (x):	1245	33	59	1335				
9	Find f(8) by	Find f(8) by newton's divided difference formulae for the data:							
	X : 4	:	5 7	10	11	13			
	f(x) : 48	1	00 294	900	1210	2028			
10	Find f'(3) and f''(3) for one following data:								
	X : 3.0	3	.2	3.4	3.6	3.8	4.0		

F(X): -14 -10.032 -5.296 -0.256 6.672 14

11 Compute f'(0) and f'(4) from the data 2 3 X: 0 1 4 Y: 1 2.718 7.381 20.086 54.598 12 The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds .find the initial acceleration using the entire data 0 5 Time(sec) : 10 15 20 3 Velocity(m/sec) : 0 14 69 228 13 Find the maximum and minimum value of y tabulated below: X: -2 -2 0 1 2 3 4 -.25 2 0 -.25 2 Y: 15.75 56 14 Using trapezoidal rule ,evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ taking 8 intervals Evaluate $\int_0^1 \frac{dx}{1+x^2}$ with h= $\frac{1}{6}$ by trapezoidal rule. 15 Evaluate the integral $\int_{1}^{2} \frac{dx}{1+x^{5}}$ by using trapezoidal rule with two sub intervals. 16 17 Dividing the range into 10 equal parts, find the value of $\int_0^{\pi/2} sinx \, dx$ by (i) Trapezoidal rule (ii) Simpson's rule. Using Simpson's one third rule evaluate $\int_0^1 x e^x dx$ taking 4 intervals. Compare your 18 result with actual value. 19 Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule (ii) Simpson's rule. Also check up result by actual integration.

²⁰ By dividing the range into ten equal parts, Evalute $\int_0^{\pi} sinx \, dx$ by using (i) Trapezoidal rule (ii) Simpson's rule. Also check up result by actual integration.