SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
19MAT202 - STATISTICS AND NUMERICAL METHODS

Two mark Questions and Answers

1. State the disadvantages of Taylor's method.

Sol. In the differential equation $d y / d x=f(x, y)$, the $f(x, y)$ function may have a complicated algebrical structure. Then the evaluation of higher order derivatives may become tedious.
2. Write down the fourth order Taylor's Algorithm.

Sol. $\mathbf{y}_{\mathrm{m}+1}=\mathbf{y}_{\mathrm{m}}+\mathbf{h y}_{\mathrm{m}}^{1}+\left(\frac{\mathbf{h}^{2}}{2!}\right) \mathbf{y}_{\mathrm{m}}^{11}+\left(\frac{\mathbf{h}^{3}}{3!}\right) \mathbf{y}_{\mathbf{m}}^{111}+.$.
3. Solve $\mathbf{y}^{\prime}=\mathbf{x}+\mathbf{y} ; \mathbf{y}(\boldsymbol{0})=\mathbf{1}$ by Taylor's series method. Find the values y at $\mathrm{x}=0.1$.

Solution:

$$
\begin{aligned}
& \text { Given } y^{\prime}=x+y ; x_{0}=0, y_{0}=1, h=0.1 \\
& y^{\prime}=x+y \Rightarrow y_{0}^{\prime}=x_{0}+y_{0}=0+1=1 \\
& y^{\prime \prime}=1+y^{\prime} \Rightarrow y_{0}^{\prime \prime}=1+y_{0}^{\prime}=1+1=2 \\
& y^{\prime \prime \prime}=y^{\prime \prime} \Rightarrow y_{0}^{\prime \prime \prime}=y^{\prime \prime}=2 \\
& y^{i v}=y^{\prime \prime \prime} \Rightarrow y_{0}^{\prime i v}=y^{\prime \prime \prime}=2
\end{aligned}
$$

$$
y_{1}=y_{0}+\frac{h}{1!} y_{0}{ }^{\prime}+\frac{h^{2}}{2!} y_{0}{ }^{\prime \prime}+\frac{h^{3}}{3!} y_{0}{ }^{\prime \prime \prime}+\ldots \ldots . .
$$

we know that $\mathbf{y}(\mathbf{0 . 1})=\mathbf{1}+\mathbf{0 . 1}+\mathbf{0 . 0 1}+\mathbf{0 . 0 0 0 3 +}$

$$
=1.11033
$$

4. Write the Euler algorithm to find the differential equation $\frac{\mathbf{d y}}{\mathbf{d x}}=\mathbf{f}(\mathbf{x}, \mathbf{y})$.

Solution:

$\mathbf{y}_{\mathbf{n}+\mathbf{1}}=\mathbf{y}_{\mathbf{n}}+\mathbf{h f}\left(\mathbf{x}_{\mathbf{n}}, \mathbf{y}_{\mathbf{n}}\right)$ for the interval ($\mathbf{x}_{\mathbf{n}}, \mathbf{y}_{\mathbf{n}}$) when $\mathrm{n}=0,1,2, \ldots$
5. State modified Euler's algorithm to solve $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ at $\quad x=x_{0}+h$

Solution:

$$
y_{n+1}=y_{n}+h f\left[x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f\left(x_{n}, y_{n}\right)\right] \text { when } n=0,1,2, \ldots
$$

6. Using Euler's method solve $\mathbf{y}^{\prime}=\mathbf{x}+\mathbf{y}+\mathrm{xy}, \mathrm{y}(\boldsymbol{0})=\mathbf{1}$. Compute y at $\mathrm{x}=0.1$ by taking $\mathrm{h}=0.05$.

Solution:

$$
\begin{aligned}
\text { Given } & : f(x, y)=x+y+x y \\
x_{0} & =0, y_{0}=\mathbf{1 ; h}=\mathbf{0 . 0 5} \\
\mathbf{y}_{1} & =\mathbf{y}_{0}+h f\left(x_{0}, y_{0}\right) \\
& =1+\mathbf{0 . 0 5}\left[\mathbf{x}_{0}+\mathbf{y}_{0}+\mathrm{x}_{0} \mathbf{y}_{0}\right] \\
& =1+\mathbf{0 . 0 5 [0 + 1}[\mathbf{0}] \\
& =1.05
\end{aligned}
$$

7. Compute y at $\mathrm{x}=0.25$ by modified Euler method given $\mathbf{y}^{\prime}=\mathbf{2 x y}, \mathbf{y}(\mathbf{0})=\mathbf{1}$.

Solution:

$$
\begin{aligned}
& \text { Given } \begin{aligned}
& y^{\prime}=2 x y \\
& x_{0}=0 ; y_{0}=1 ; h=0.25 \\
& y_{1}= y_{0}+h f\left[x_{0}+\frac{h}{2}, y_{0}+\frac{h}{2} f\left(x_{0}, y_{0}\right)\right] \\
&=1+0.25 f\left[0+\frac{0.25}{2}, 1+\frac{0.25}{2}\left(2 x_{0} y_{0}\right)\right] \\
&= 1+0.25 f[0.25,1] \\
&=1+0.25[2(0.125)(1)] \\
&=1+0.625=1.0625
\end{aligned}
\end{aligned}
$$

8. Write down the Runge- Kutta method formula of second order to solve $\mathbf{y}^{\prime}=\mathbf{f}(\mathbf{x}, \mathbf{y})$ with $\mathbf{y}\left(\mathbf{x}_{\mathbf{0}}\right)=\mathbf{y}_{\mathbf{0}}$.

Solution:

$$
\begin{aligned}
& \mathbf{k}_{1}=h f(x, y) \\
& \mathbf{k}_{2}=h f\left[x+\frac{h}{2}, y+\frac{k_{1}}{2}\right] \\
& \text { and } \Delta y=k_{2} \\
& \mathbf{y}_{\mathbf{1}}=\mathbf{y}_{\mathbf{0}}+\Delta y
\end{aligned}
$$

9. Write down the Runge kutta method formula of fourth order to solve $\frac{d y}{d x}=f(x, y)$ with $\mathbf{y}\left(\mathbf{x}_{\mathbf{0}}\right)=\mathbf{y}_{\mathbf{0}}$.

Solution:

$$
\begin{aligned}
& k_{1}=h f(x, y) \\
& k_{2}=h f\left[x+\frac{h}{2}, y+\frac{k_{1}}{2}\right] \\
& k_{3}=h f\left[x+\frac{h}{2}, y+\frac{k_{2}}{2}\right] \\
& k_{4}=h f\left[x+h, y+k_{3}\right] \\
& \text { and } \quad \Delta y=\frac{1}{6}\left[k_{1}+2 k_{2}+2 k_{3}+k_{4}\right] \\
& y_{1}=y_{0}+\Delta y
\end{aligned}
$$

10. Compare Taylor's series and RK method.

Solution:

R.K methods do not require prior calculation of higher derivatives of $\mathrm{y}(\mathrm{x})$ as the Taylor method does.

Also the RK formulas involve the computation of $f(x, y)$ at various position, instead of derivatives and this function occurs in the given equation.
11. Write Milne's predictor corrector formula.

Solution:
Milne's predictor formula

$$
y_{n+1, p}=y_{n-3}+\frac{4 h}{3}\left[2 y_{n-2}^{\prime}-y_{n-1}^{\prime}+2 y_{n}^{\prime}\right]
$$

Milne's corrector formula

$$
y_{n+1, c}=y_{n-1}+\frac{h}{3}\left[y_{n-1}^{\prime}+y_{n}^{\prime}+2 y_{n+1}^{\prime}\right]
$$

12. How many prior values are required to predict the next value in Milne's method?

Solution:

Four prior values

$$
y\left(x_{0}\right)=y_{0} ; y\left(x_{1}\right)=y_{1} ; y\left(x_{2}\right)=y_{2} ; y\left(x_{3}\right)=y_{3}
$$

13. What is the error term in Milne's corrector formula?

Solution:
The error term is $-\frac{\mathbf{h}}{\mathbf{9 0}} \Delta^{4} \mathbf{y}_{\mathbf{0}}$
14. What is the error term in Milne's predictor formula?

Solution:

The error term is $\frac{\mathbf{1 4 h}}{\mathbf{4 5}} \Delta^{4} \mathbf{y}_{\mathbf{0}}^{\prime}$
15. Write down Adams Bashforth predictor corrector formula.

Solution:
Adams Bashforth predictor formula is

$$
y_{n+1, p}=y_{n}+\frac{h}{24}\left[55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right]
$$

Adams Bashforth corrector formula is

$$
y_{n+1, c}=y_{n}+\frac{h}{24}\left[9 y_{n+1}^{\prime}+19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right]
$$

16. How many prior values are required to predict the next value in Adam's method?

Solution:
Four prior values.
17. What is the predictor -corrector method of solving a differential equation?

Solution:

Predictor -Corrector methods are methods which require the values of y at $\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}-2}, \ldots .$. . for computing the value of y at $\mathrm{x}_{\mathrm{n}+\mathbf{1}}$. We first use a formula to find the value of y at $\mathbf{x}_{\mathrm{n}+1}$ and this is known as a predictor formula. The value of y so got is improved or corrected by another formula known as corrector formula.
18. Compare Runge-Kutta method and Predictor-Corrector method.

Solution:

Runge-Kutta method:

RK methods are self-starting ,since they do not use information from previously calculated
points.
Rk method is single step method.In these methods,it is not possible to get any information about truncation.

Predictor-Corrector method:
Predictor-Corrector method is not self starting,since these methods require information about four prior points.

It is multi step method.In these methods, it is possible to get easily a good estimate of truncation error.
19. Write the merits and demerits of the Taylor's method of solution

Sol. The method gives a straight forward adaption of classic calculus to develop the solution as an infinite series. It is a powerful single step method if we are able to find the successive derivatives easily. If $\mathrm{f}(\mathrm{x}, \mathrm{y})$ involves some complicated algebraic structures then the calculation of higher derivatives become tedious and the method fails.
20. Which is better Taylor's method or R.K. Method ?

Sol. R.K methods do not require prior calculation of higher derivatives of $\mathrm{y}(\mathrm{x})$, as the Taylor's method does. Since the differential equations using in applications are often complicated, the calculation of derivatives may be difficult.

