SNS COLLEGE OF TECHNOLOGY
 (An Autonomous Institution)
 19MAT202 - STATISTICS AND NUMERICAL METHODS
 16 mark Questions and Answers

1. By Taylor's series method find $y(0.1)$ given that $y^{11}=y+x y ; y(0)=1 ; y^{1}(0)=0$.
2. Solve the system of equations $d y / d x=z-x^{2}, d z / d x=y+x$ with $y(0)=1, z(0)=1$ by taking $h=0.1$, to get $y(0.1)$ and $z(0.1)$. Here y and z are dependent variable and x is independent.
3. Using Euler's method find $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ from $\mathrm{dy} / \mathrm{dx}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1$, with $\mathrm{h}=0.2$.
4. Using modified Euler's method compute $\mathrm{y}(0.1)$ with $\mathrm{h}=0.1$ from $\mathrm{y}^{1}=\mathrm{y}-(2 \mathrm{x} / \mathrm{y}), \mathrm{y}(0)=1$.
5. Given $d y / d x=x^{3}+y, y(0)=2$. Compute $y(0.2), y(0.4), y(0.6)$ by Runge-Kutta method of Fourth order.
6. Solving the system of differential equation $d y / d x=x z+1 ; d z / d x=-x y$ for $x=0.3$ using fourth order Runge- Kutta method , the initial values are $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=1$.
7. Determine the value of $y(0.4)$ using Milne's method given $y^{1}=x y+y^{2}, y(0)=1$; Use Taylor series to get the values of $y(0.1), y(0.2), y(0.3)$.
8. Using Runge-Kutta method calculate $\mathrm{y}(0.1), \mathrm{y}(0.2), \mathrm{y}(0.3)$ given that $\frac{\mathbf{d y}}{\mathbf{d x}}-\frac{\mathbf{2 x y}}{\mathbf{1 + \mathbf { x } ^ { 2 }}}=\mathbf{1}, \mathrm{y}(0)=0$.

Taking these values as starting values find $\mathrm{y}(0.4)$ by milne's method.
9. Find $\mathrm{y}(0.1), \mathrm{y}(0.2), \mathrm{y}(0.3)$ from $\frac{\mathbf{d y}}{\mathbf{d x}}=\mathbf{x y}+\mathbf{y}^{\mathbf{2}}, \mathrm{y}(0)=1$ by using R.K method and hence obtain $y(0.4)$ using Adam's method.

