SNS COLLEGE OF TECHNOLOGY

Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

VQAR-VERBAL QUANTITATIVE APTITUDE REASONING IIYEAR/ III SEMESTER

UNIT 1-QUANTITATIVE ABILITY III
TOPIC 2: AVERAGE SPEED- RELATIVE SPEED- TRAIN PROBLEMS

Q.2. A train travelling at $78 \mathrm{~km} / \mathrm{hr}$ crosses a girl sitting in a train of length 110 m travelling in the same direction at $42 \mathrm{~km} / \mathrm{hr}$ in 20 seconds. The length of the faster train is

Sol : Option C

Explanation: Let the length of the faster train $=x$
$\therefore 18 \mathrm{x} /[5(78-42)]=20 \rightarrow \mathrm{x}=200$
$\rightarrow 200 \mathrm{~m}$
Q.3. Two trains are traveling in opposite directions at 90 kmph and 18 kmph . If the length of the faster train is 600 m , find the time taken by the faster train to cross a man standing in the slower train.

```
Sol : Option A Explanation: As the faster train crosses the man in the slower train, time taken in this case = length of the faster train / Relative speed.
Thus time \(=600 / 30=20\) seconds.
```


> 5. Two trains of lengths 120 m and 50 m are running on parallel tracks at $66 \mathrm{~km} / \mathrm{hr}$ and $60 \mathrm{~km} / \mathrm{hr}$ respectively. In what time will they pass each other?

Sol : Option D

Explanation: Dist to be covered is $120+50=170 \mathrm{~m}$.
Relative speed is $66-60=5 \mathrm{~km} / \mathrm{hr}=6 \times 5 / 18$
$=30 / 18 \mathrm{~m} / \mathrm{s}$. So time required $=200 /(30 / 18)=102 \mathrm{sec}$.

Q.6.The distance between two stations, Delhi and Amritsar, is 530 km . A train starts at 4 p.m. from Delhi and moves to Amritsar at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. Another train starts from Amritsar at 3.20 p.m. and moves towards Delhi at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. How far from Delhi will the two meet?

Sol : Option B

Explanation: Suppose the trains meet at a distance of xkm from Delhi.
At 4 pm the distance that has to be covered is
$530-60 \times 2 / 3=490 \mathrm{~km}$.
The relative speed of the trains is $80+60=140 \mathrm{~km} / \mathrm{h}$. Time required for covering the distance is 490 / 140 hours.

The train from Delhi will be $80 \times 49 / 14 \mathrm{~km}$ away from Delhi at the point of meeting. $=40 \times 49 / 7=$ 280 km .

Q7.A train passes a station platform in 36 sec and a man standing on the platform in 20 sec . If the speed of the train is $54 \mathrm{~km} / \mathrm{hr}$, find the length of the platform.

Sol: Option A

Explanation: Speed of the train is $54 \times 5 / 18=15 \mathrm{~m} / \mathrm{s}$.
Length of the train is $20 \times 15=300 \mathrm{~m}$.
Length of platform + train $=36 \times 15=540 \mathrm{~m}$.
So the length of the platform is $540-300=240 \mathrm{~m}$.
(No wonder it did not stop at this station!)

> Q8.Two trains of lengths 110 m and 90 m are running on parallel tracks at $45 \mathrm{~km} / \mathrm{hr}$ and $50 \mathrm{~km} / \mathrm{hr}$ respectively. In what time will they pass each other?

Sol : Option D

Explanation: Distance to be covered is $110+90=200 \mathrm{~m}$. Relative speed is $50-45=5 \mathrm{~km} / \mathrm{hr}=5 \times$ $5 / 18=25 / 18 \mathrm{~m} / \mathrm{s}$. So time required $=200 /(25 / 18)=144 \mathrm{sec}$.

> Q9.A train running at $54 \mathrm{~km} / \mathrm{hr}$ crosses a telegraph pole in 18 seconds less time than it takes to cross a platform. Find the length of the platform.

Sol : Option C

Explanation: : Speed is $54 \times 5 / 18=15 \mathrm{~m} / \mathrm{s}$. Let the time required for crossing the pole be t. Length of the train is $15 \times$. Length of the train + length of the platform
$=15 \times(t+18)$. So length of the platform $=15 \times(t+18)-15 \times t=15 \times 18=270 \mathrm{~m}$.

Q10.A train crosses a platform at $54 \mathrm{~km} / \mathrm{hr}$ in 20 seconds. Another train is 150 m shorter than the former and is running at $36 \mathrm{~km} / \mathrm{hr}$. Find the time the second train will take to cross the same platform.

```
Sol: Option C
Explanation:Speed of the first train is 54 \times 5/18=15 m/s.
(Length of the platform + length of the train) is =20 * 15
= 300 m. If the second train is }150\textrm{m}\mathrm{ shorter, then the length of the platform + length of the second
train is 300-150=150m.
That train is running at 36 km/hr=36\times5/18=10 m/s.
So it will take 150/10=15 seconds to cross the platform.
```


Formulas and Quick Tricks for Train Problems

1. Time taken by a train x metres long in passing a signal post or a pole or a standing man is equal to the time taken by the train to cover x metres.
2. Time taken by a train x metres long in passing a stationary object of length y metres is equal to the time taken by the train to cover $x+y$ metres.
3. Suppose two trains are moving in the same direction at $u \mathrm{kmph}$ and $v \mathrm{kmph}$ such that $u>v$, then their relative speed $=u-v \mathrm{kmph}$.
4. If two trains of length xkm and ym are moving in the same direction at ukmph and $v \mathrm{kmph}$, where $u>v$, then time taken by the faster train to cross the slower train $=(x+y) /(u-v)$ hours.
5. Suppose two trains are moving in opposite directions at $u \mathrm{kmph}$ and $v \mathrm{kmph}$. Then, their relative speed $=(u+v) \mathrm{kmph}$.
6. If two trains of length xkm and ykm are moving in the opposite directions at ukmph and v kmph , then time taken by the trains to cross each other $=(x+y)(u+v)$ hours.
7. If two trains start at the same time from two points A and B towards each other and after crossing they take a and b hours in reaching B and A respectively, then A's speed: B's speed $=(\sqrt{b}: \sqrt{ } \mathrm{a})$

