The magnetic flux produced by the current in each phase can be represented by the equations given below. This is a similar representation of current is a three-phase system as the flux is cophasial with the current.

$$\phi_R = \phi_m \sin(\omega t)$$
 $\phi_Y = \phi_m \sin(\omega t - 120^o)$
 $\phi_B = \phi_m \sin(\omega t - 240^o)$

Where, ϕ_R , ϕ_Y and ϕ_B are the instantaneous flux of corresponding Red, Yellow and Blue phase winding, ϕ_M amplitude of the flux wave. The flux wave in the space can be represented as shown below.

Now, on the above graphical representation of flux waves, we will first consider the point 0.

Here, the value of $\phi_{ extsf{R}}$ is $\phi_{ extsf{R}} = \phi_{ extsf{m}} \sin(0) = 0$

$$\phi_Y = \phi_m \sin(0 - 120^o) = \phi_m \sin(-120^o) = -\frac{\sqrt{3}}{2}\phi_m$$

The value of ϕ_Y is

$$\phi_B = \phi_m \sin(0-240^o) = \phi_m \sin(-240^o) = \frac{\sqrt{3}}{2} \phi_m$$

The value of ϕ_B is

The resultant of these fluxes at that instant (ϕ_r) is $1.5\phi_m$ which is shown in the figure below.

Now, on the above graphical representation of flux waves, we will consider the point 1, where $\omega t = \pi / 6$ or 30°.

$$\phi_R = \phi_m \sin(30^0) = \frac{1}{2} \phi_m$$

Here, the value of ϕ_R is

The value of $\phi_{^{\scriptscriptstyle Y}}$ is $\phi_{Y}=\phi_{m}\sin(30^{o}-120^{o})=\phi_{m}\sin(-90^{o})=-\phi_{m}$

The value of
$$\phi_{^{_{\rm B}}}$$
 is $\phi_B=\phi_m\sin(30^o-240^o)=\phi_m\sin(-210^o)=rac{1}{2}\phi_m$

The resultant of these fluxes at that instant (φ_t) is $1.5\varphi_m$ which is shown in the figure below. here it is clear that the resultant flux vector is rotated 30° further clockwise without changing its value.

Now, on the graphical representation of flux waves, we will consider the point 2, where $\omega t = \pi / 3$ or 60° .

$$\phi_R = \phi_m \sin(60^o) = \frac{\sqrt{3}}{2} \phi_m$$

Here, the value of φ_R is

$$\phi_Y = \phi_m \sin(60^o - 120^0) = \phi_m \sin(-60^o) = -\frac{\sqrt{3}}{2}\phi_m$$

The value of φ_Y is

$$\phi_B = \phi_m \sin(60^o - 240^0) = \phi_m \sin(-180) = 0$$

The value of ϕ_B is

The resultant of these fluxes at that instant (φ_r) is $1.5\varphi_m$ which is shown in the

figure below. here it is clear that the resultant flux vector is rotated 30° further clockwise without changing its value.

Now, on the graphical representation of flux waves, we will consider the point 3, where $\omega t = \pi / 2$ or 90°.

$$\phi_R = \phi_m \sin(90^\circ) = \phi_m$$

Here, the value of φ_R is

$$\phi_Y = \phi_m \sin(90^o - 120^o) = \phi_m \sin(-30^o) = -\frac{1}{2}\phi_m$$

The value of ϕ_Y is

$$\phi_B = \phi_m \sin(90^o - 240^o) = \phi_m \sin(-150^o) = -\frac{1}{2}\phi_m$$

The value of φ_B is

The resultant of these fluxes at that instant (ϕ_r) is $1.5\phi_m$ which is shown in the figure below. here it is clear that the resultant flux vector is rotated 30° further clockwise without changing its value.

In this way we can prove that the due to balanced supply applied to the three pfase stator winding a rotating or revolving magnetic fiels is established in thew space.