Subject Code/ Name: 23CHT102 / CHEMISTRY OF ENGINEERING MATERIALS

DEPARTMENT OF CHEMISTRY

<u> PART – A</u>

1. Define Corrosion. What are the consequences of corrosion

Corrosion is defined as the gradual destruction of metals or alloys by chemical or electrochemical reaction with its environment.

- 1. Efficiency of the machine is lost due to corrosion products
- 2. Products get contaminated due to released toxic products
- 3. Corroded equipment must be replaced frequently
- 4. Failure of plants
- 5. Necessary of over designing to compensate corrosion.

2. List out the differences between dry corrosion and wet corrosion

S.	Chemical corrosion	Electrochemical corrosion
No		
1	It ocuurs only in dry condition	It occurs in the presence of moisture
		or electrolyte
2	It is due to the direct chemical	It is due to the set up of large number
	attack of the metal by the	of cathodic and anodic areas.
	environment	
3	Even a homogeneous metal	Heterogeneous surface (or)Bimetallic
	surface get corroded	contact is the condition.
4	Corrosion of the product	Corrosion occurs at the anode ,while
	accumulate in the same place	products formed elsewhere.
	where corrosion occurs	
5.	Chemical corrosion is self-	Electrochemical corrosion is
	controlled	continous process.
6	It follows absorption	It follows electrochemical
	mechanism	mechanism.
7.	Formation of mild scale on the	Rusting of the iron on the moist
	iron surface	surface.

3. Define inhibitors. Mention their types

A corrosion inhibitor is a substance which reduces the corrosion of a metal, when it is added to

the corrosive environment.

Types of Inhibitors

- 1.Anodic Inhibitors
- 2. Cathodic Inhibitors
- **3.Vapour Phase Inhibitors**

4. What is pilling beds worth rule?

The ratio of the volume of the oxide formed to the volume of the metal consumed is called

"Pilling-Bedworth ratio"

5.What are vapour phase corrosion inhibitors? Give an example

Subject Code/ Name: 23CHT102 / CHEMISTRY OF ENGINEERING MATERIALS

protective layer on the metal surface. VPI are used in the protection of storage containers, packing materials, etc.

Examples: Dicyclohexylammonium nitrate, benzotriazole etc

6. What are paints?

Paint is a viscous, opaque (not clear), mechanical dispersion mixture of one or more pigments (dye) in a vehicle (drying oil).

7. What are fire retardant paints?

Fire retardant paints are protective, decorative coating designed to reduce the spread of flames in the event of a fire.

Fire retardant paint is formulated with special additives that help slow the spread of flames in the event of a fire. These additives are typically based on phosphorus or nitrogen compounds, which react when exposed to heat and flame, creating an oxygen-starved environment that slows down or stops the spread of fire

8. Comparison of Sacrificial anode method and impressed current cathodic current method

S.No	Sacrificial anode method	Impressed current method
1	External power supply is not	External power supply is
	required	required
2	The cost of investment is low.	The cost of investment is high.
3	This requires periodical	Replacement is not required as
	replacement of sacrificial	anodes are stable
	anode	
4	Soil and microbiological	Soil and microbiological
	corrosion effects are not	corrosion effects are taken into
	considered	account.
5	This is the most economical	This is well suited for large
	method especially when short	structures and long term
	term protection is required	operations.
6	This is a suitable method	This is a suitable method when
	when the current requirement	the current requirement and the
	and the resistivity of the	resistivity of the electrolytes are
	electrolytes are relatively low.	relatively high.

9. What is meant by Nanochemistry?

It is defined as the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales.

10. What are nanoparticles?

Nanoparticles (NPs) are solid particles or particulate dispersions with a size in the range between 1 and 100 nm. Example: ZnO,CdS,SiO_2

11. How do nanomaterials di	ffer from bulk materials?
-----------------------------	---------------------------

Nano-particles	Bulk particles		
Size is less than 100nm	Size is larger in micron size		
Collection of few molecules	Collection of thousands of molecules		
Surface area is more	Surface area is less		
Strength, hardness are more	Strength, hardness are less		

_Subject Code/ Name: 23CHT102 / CHEMISTRY OF ENGINEERING MATERIALS

12. What is top-down approach? Give an example

It involves conversion of larger particles into smaller particles of nano-scale structure. This methods is carried out by the following process.

1.Laser ablation

2. Chemical Vapour Deposition (CVD)

3. Electro-deposition

13. What is Bottom up approach? Give an example

It involves building-up of materials from the bottom by atom by atom ,molecule by molecule or cluster by cluster. This method is carried out by the following process

- 1. Chemical precipitation method
- 2. Thermolysis
 - (a) Solvothermal method
 - (b) Hydrothermal method
- 3. Solgel method
