
ARM-7
A D D R E S S I N G M O D E S

I N S T R U C T I O N S E T

1

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Addressing modes

2

When accessing an operand for a data processing or

movement instruction, there are several standard techniques

used to specify the desired location. Most processors support

several of these addressing modes

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

1. Immediate addressing: the desired value is presented as a binary value

in the instruction.

2. Absolute addressing: the instruction contains the full binary address of

the desired value in memory.

3. Indirect addressing: the instruction contains the binary address of a

memory location that contains the binary address of the desired value.

4.Register addressing: the desired value is in a register, and the instruction

contains the register number.

5.Register indirect addressing: the instruction contains the number of a

register which contains the address of the value in memory.

3

Addressing modes

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

6.Base plus offset addressing: the instruction specifies a register (the

base) and a binary offset to be added to the base to form the memory

address.

7.Base plus index addressing: the instruction specifies a base register

and another register (the index) which is added to the base to form the

memory address.

8.Base plus scaled index addressing: as above, but the index is

multiplied by a constant (usually the size of the data item, and usually a

power of two) before being added to the base.

9.Stack addressing: an implicit or specified register (the stack pointer)

points to an area of memory (the stack) where data items are written

(pushed) or read (popped) on a last-in-first-out basis.

4

Addressing modes

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

The ARM instruction set

5

All ARM instructions are 32 bits wide (except the compressed 16-bit

Thumb Instructions) and are aligned on 4-byte boundaries in memory.

The most notable features of the ARM instruction set are:

The load-store architecture;

 3-address data processing instructions (that is, the two source operand

registers and the result register are all independently specified);

 conditional execution of every instruction;

 the inclusion of very powerful load and store multiple register instructions;

the ability to perform a general shift operation and a general ALU operation

in a single instruction that executes in a single clock cycle;

open instruction set extension through the coprocessor instruction set,

including adding new registers and data types to the programmer's model;

a very dense 16-bit compressed representation of the instruction set in the

Thumb architecture.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Addressing modes

6

 Memory is addressed by generating the Effective Address
(EA) of the operand by adding a signed offset to the
contents of a base register Rn.

 Pre-indexed mode:
 EA is the sum of the contents of the base register Rn and an

offset value.

 Pre-indexed with writeback:
 EA is generated the same way as pre-indexed mode.

 EA is written back into Rn.

 Post-indexed mode:
 EA is the contents of Rn.

 Offset is then added to this address and the result is written
back to Rn.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Addressing modes (contd..)

7

 Relative addressing mode:

 Program Counter (PC) is used as a base register.

 Pre-indexed addressing mode with immediate offset

 No absolute addressing mode available in the ARM
processor.

 Offset is specified as:
 Immediate value in the instruction itself.

 Contents of a register specified in the instruction.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Thumb

8

Thumb is a 16-bit instruction set

– Optimized for code density from C code

– Improved performance form narrow memory

– Subset of the functionality of the ARM instruction set

Core has two execution states – ARM and Thumb

– Switch between them using BX instruction

Thumb has characteristic features:

– Most Thumb instructions are executed unconditionally

– Many Thumb data process instruction use a 2-address

format

– Thumb instruction formats are less regular than ARM

instruction formats, as a result of the dense encoding.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

I/O System

9

ARM handles input/output peripherals as memory-

mapped with interrupt support

Internal registers in I/O devices as addressable

locations with ARM’s memory map read and written

using load-store instructions

Interrupt by normal interrupt (IRQ) or fast interrupt

(FIQ)

Interrupt input signals are level-sensitive and

maskable

May include Direct Memory Access (DMA)

hardware

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

1. Data processing instructions.

2. Branch instructions.

3. Load store instructions.

4. Software interrupt instructions.

5. Program status register instructions.

6. Loading constants.

7. Conditional Execution.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

a) M O V E INST RU C T IO NS.

b) BA R R E L SHIFT ER.

c) ARITHMETIC INST RU C T IO NS.

d) U S I N G T H E BA R R E L S H I F T E R WITH
ARITHMETIC INST RU C T IONS.

e) L O G I C A L INSTRUCTIONS.

f) C O M PA R ISIO N INST RU C T IO NS.

g) M U LT I P LY INST RU C T IO NS.

Data Processing Instruction

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Move is the simplest ARM instruction.

 It copies N into a destination register Rd, where N is a
register or immediate value. This instruction is useful for
setting initial values and transferring data between
registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV Instruction

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

This example shows a simple move instruction. The
MOV instruction takes the contents of register r5 and
copies them into register r7, in this case, taking the value
5, and overwriting the value 8 in register r7.

🞭 P R E
r5 = 5
r7 = 8

M OV r7, r5 ; let r7 = r5

🞭 P O S T
r5 = 5
r7 = 5

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 The arithmetic instructions implement addition and

subtraction of 32-bit signed and unsigned values.

 Syntax: <instruction>{<cond>}{S} Rd, Rn, N

14

N is the result of the shifter operation.
MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

🞭 The simple subtract instruction subtracts a value stored

in register r2 from a value stored in register r1. The result

is stored in register r0.

🞭 P R E r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000001

S U B r0, r1, r2

🞭 P O S T r0 = 0x00000001

E X A M P L E

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Logical instructions perform bitwise logical operations
on the two source registers.

 Syntax: <instruction>{<cond>}{S} Rd, Rn, N

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

This example shows a logical OR operation between registers

r1 and r2. r0 holds the result.

PRE r0 = 0x00000000

r1 = 0x02040608

r2 = 0x10305070

ORR r0, r1, r2

POST r0 = 0x12345678

Example

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Comparison Instructions

The comparison instructions are used to compare or test a register with

a 32-bit value. They update the cpsr flag bits according to the result, but

do not affect other registers.After the bits have been set, the information

can then be used to change program flow by using conditional

execution.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

This example shows a CMP comparison instruction. You can see that

both registers, r0 and r9, are equal before executing the instruction.

The value of the z flag prior to execution is 0 and is represented by a

lowercase z. After execution the z flag changes to 1 or an uppercase Z.

This change indicates equality.

PRE cpsr = nzcvqiFt_USER

r0 = 4

r9 = 4

CMP r0, r9

POST cpsr = nZcvqiFt_USER

Example

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Multiply Instructions

The multiply instructions multiply the contents of a pair of registers and,

depending upon the instruction, accumulate the results in with another

register. The long multiplies accumulate onto a pair of registers

representing a 64-bit value. The final result is placed in a destination

register or a pair of registers.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

This example shows a simple multiply instruction that multiplies

registers r1 and r2 together and places the result into register r0. In this

example, register r1 is equal to the value 2, and r2 is equal to 2. The

result, 4, is then placed into register r0.

PRE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000002

MUL r0, r1, r2 ; r0 = r1*r2

POST r0 = 0x00000004

r1 = 0x00000002

r2 = 0x00000002

Example

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

🞭 A branch instruction changes the flow of execution
or is used to call a routine.

🞭 This type of instruction allows programs to have
subroutines, if-then-else structures, and loops.

🞭 The change of execution flow forces the program
counter pc to point to a new address.

🞭 The ARMv5E instruction set includes four different
branch instructions

Syntax: BL{<cond>} label

B{<cond>} label

BX{<cond>} Rm

BLX{<cond>} label | R

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 The address label is stored in the instruction as a

signed pc-relative offset and must be within

approximately 32 MB of the branch instruction.

 T refers to the Thumb bit in the cpsr. When

instructions set T, the ARM switches to Thumb state.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 This example shows a forward and backward branch. Because these

loops are address specific, we do not include the pre- and post-

conditions.

 The forward branch skips three instructions. The backward branch

creates an infinite loop.

The branch labels are placed at the

beginning In this example, forward

and backward are the labels.

of the line and are used to mark an

address

that can be used later by the

assembler to calculate the branch

offset.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Load-store instructions transfer data between memory and processor

registers.

 There are three types of load-store instructions:

 Single-Register Transfer

 Multiple-Register Transfer

 Swap Instruction

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

🞭 These instructions are used for moving a single data
item in and out of a register.

🞭 The data types supported are signed and unsigned
words (32-bit), half words (16-bit), and bytes.

🞭 Various load-store single-register transfer instructions
are

🞭 Syntax:

<LDR|STR>{< cond >}{B} Rd,addressing1

LDR{< cond > } S B | H | S H Rd, addressing2

STR{ < cond > } H Rd, addressing2

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

; load register r0 with the contents of the memory address
;pointed to by register r1.

L D R r0, [r1] ; = L D R r0, [r1, #0]

; store the contents of register r0 to the memory address
;pointed to by register r1.

STR r0, [r1] ; = STR r0, [r1, #0]

 The first instruction loads a word from the address stored in register
r1 and places it into register r0. The second instruction goes the other
way by storing the contents of register r0 to the address contained in
register r1. The offset from register r1 is zero. Register r1 is called th2e8

base address register. MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

🞭 L D R and STR instructions can load and store data on
a boundary alignment that is the same as the data
type size being loaded or stored.

🞭 For example, L D R can only load 32-bit words on a
memory address that is a multiple of four bytes—0, 4,
8, and so on.

🞭 This example shows a load from a memory address
contained in register r1, followed by a store back to the
same address in memory.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 The first instruction loads a word from the address

stored in register r1 and places it into

register r0.

The second instruction goes the other way by storing

the contents of register r0 to the address contained in

register r1.

The offset from register r1 is zero. Register r1 is called

the base address register.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

The swap instruction is a special case of a load-store instruction. It swaps

the contents of memory with the contents of a register. This instruction is

an atomic operation—it reads and writes a location in the same bus

operation, preventing any other instruction from reading or writing to that

location until it completes.

Swap Instruction

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

33

The swap instruction loads a word from memory into register r0 and

overwrites the memory with register r1.

PRE mem32[0x9000] = 0x12345678

r0 = 0x00000000 r1

= 0x11112222 r2 =

0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

r0 = 0x12345678 r1

= 0x11112222 r2 =

0x00009000

This instruction is particularly useful when implementing

semaphores and mutual

exclusion in an operating system. You can see from the syntax that

this instruction can also

have a byte size qualifier B, so this instruction allows for

both a word and a byte swap.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

S O F T W A R E I N T E R R U P T I N S T R U C T I O N
 A software interrupt instruction (SWI) causes a

software interrupt exception, which provides a
mechanism for applications to call operating system
routines.

 Syntax: SWI{<cond>} SWI_number

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 When the processor executes an SWI instruction, it
sets the program counter pc to the offset 0x8 in the
vector table.

 The instruction also forces the processor mode to S V C ,
which allows an operating system routine to be called
in a privileged mode.

 Each SWI instruction has an associated SWI number,
which is used to represent a particular function call or
feature.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

E X A M P L E
🞭 Here we have a simple example of an SWI call with

SWI number 0x123456, used by ARM toolkits as a
debugging SWI. Typically the SWI instruction is
executed in user mode.

🞭 P R E cpsr = nzcVqift_USER
pc = 0x00008000

lr = 0x003fffff; lr = r14
r0 = 0x12

0x00008000 SWI 0x123456

🞭 P O S T cpsr = nzcVqIft_SVC
spsr = nzcVqift_USER
pc = 0x00000008

lr = 0x00008004
r0 = 0x12 36

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Since SWI instructions are used to call operating system
routines, you need some form of parameter passing. This is
achieved using registers. In this example, register r0 is
used to pass the parameter 0x12.

 The return values are also passed back via registers. Code
called the SWI handler is required to process the SWI call.
The handler obtains the SWI number using the address of
the executed instruction, which is calculated from the link
register lr.

 The SWI number is determined by

SWI_Number = <SWI instruction> A N D NOT(0xff000000)

 Here the SWI instruction is the actual 32-bit SWI
instruction executed by the processor.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

🞭 The ARM instruction set provides two instructions to
directly control a program status register (psr).

🞭 The MRS instruction transfers the contents of either the
cpsr or spsr into a register; in the reverse direction, the
MSR instruction transfers the contents of a register into
the cpsr or spsr. Together these instructions are used to
read and write the cpsr and spsr.

🞭 In the syntax you can see a label called fields. This can
be any combination of control (c), extension (x), status
(s), and flags (f). These fields relate to particular byte
regions in a psr.

🞭 The c field controls the interrupt masks, Thumb state,
and processor mode.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

SY N TAX :
MRS{<COND>} R D ,< C P S R | S P S R >
MSR{<COND>} < C P S R | S P S R >_< F I E L D S >,R M

MSR{<COND>} <C P S R|S P S R>_<F I E L D S>,# I M M E D I AT E

psr byte fields

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 You might have noticed that there is no ARM
instruction to move a 32-bit constant into a
register. Since ARM instructions are 32 bits in
size, they obviously cannot specify a general 32-bit
constant.

 To aid programming there are two pseudo
instructions to move a 32-bit value into a register

Loading constants

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

The first pseudo instruction writes a 32 bit constant to a

register using whatever instructions are available. It

defaults to a memory read if the constant cannot be

encoded using other instructions.

The second pseudo instruction writes a relative address

into a register, which will be encoded using a pc-relative

expression.

Syntax:

LDR Rd, =constant

ADR Rd, label

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

ARMv5E Extensions

 The ARMv5E extensions provide many new

instructions.

 ARMv5E provides greater flexibility and efficiency

when manipulating 16-bit values,which is important

for applications such as 16-bit digital audio

processing.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

New instructions provided by the
ARMv5E extensions

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Count Leading Zeros Instruction

 The count leading zeros instruction counts the

number of zeros between the most significant bit

and the first bit set to 1.

 Example

The first bit set to 1 has 27 zeros preceding it. CLZ

is useful in routines that have to normalize

numbers.

PRE

r1=0b00000000000000000000000000010000

CLZ r0, r1

POST

r0 = 27

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Most ARM instructions are conditionally executed—you
can specify that the instruction only executes if the
condition code flags pass a given condition or test.

 By using conditional execution instructions you can
increase performance and code density.

 The condition field is a two-letter mnemonic appended to
the instruction mnemonic.

 The default mnemonic is AL,or always execute.

 Conditional execution reduces the number of branches,
which also reduces the number of pipeline flushes and
thus improves the performance of the executed code.

 Conditional execution depends upon two components:
the condition field and condition flags.

 The condition field is located in the instruction, and

 The condition flags are located in the cpsr.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

This example shows an ADD instruction with the EQ

condition appended.

This instruction will only be executed when the zero flag in

the cpsr is set to 1.

; r0 = r1 + r2 if zero flag is set

ADDEQ r0, r1, r2

Example

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

• All instructions are 32 bits long.

• Most instructions are executed in one single cycle.

• Every instructions can be conditionally executed.

• A load/store architecture

– Data processing instructions act only on registers

• Three operand format

• Combined ALU and shifter for high speed bit manipulation

– Specific memory access instructions with powerful auto-indexing

addressing modes

– 32 bit ,16 bit and 8 bit data types

– Flexible multiple register load and store instructions

Arm Instruction Set Advantages

47
MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

• All instructions are exactly 16 bits long to improve code density

over other 32-bit architectures

• The Thumb architecture still uses a 32-bit core, with:

– 32-bit address space

– 32-bit registers

– 32-bit shifter and ALU

– 32-bit memory transfer

• Gives....

– Long branch range

– Powerful arithmetic operations

– Large address space

Thumb Instruction Set Advantages

48
MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

• The Thumb instruction set is a subset of the ARM
instruction set, optimized for code density.

• Almost every Thumb instructions have an ARM instructions

equivalent:

– ADD Rd, #Offset8 <> ADDS Rd, Rd, #Offset8

• Inline expansion of Thumb Instruction to ARM Instruction

– Real time decompression

– Thumb instructions are not actually executed on the core

• The core needs to know whether it is reading Thumb
instructions or ARM instructions.

– Core has two execution states - ARM and Thumb

– Core does not have a mixed 16 and 32 bit instruction set.

How Does Thumb Work ?

49
MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Thumb Instruction Set Decompression

0 0 11 1 1 0

31 0

0 0 1 1 0 Rd Constant

15 0

Always
condition

0 1 0 0 1 0 0 0 00 Rd 0 Rd

THUMB: ADD Rd,#Constant

Major
opcode

Constant

Destination &
source register

Zero extended
constant

781116 15 1221 20 192428

I op1+op2S

ARM: ADDS Rd, Rd, #Constant

Minor
opcode

50
MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Branch Instructions

51

• Thumb supports four types of branch instruction:

– an unconditional branch that allows a forward or backward branch of

up to 2Kbytes

– a conditional branch to allow forward and backward branches of up

to 256 bytes

– a branch with link is supported with a pair of instructions that allow

forward and backwards branches of up to 4Mbytes

– a branch and exchange instruction branches to an address in a

register and optionally switches to ARM code execution

• List of branch instructions

– B

– B

– BL

– BX

conditional branch

unconditional branch

Branch with link

Branch and exchange instruction set

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Data Processing Instructions

52

• Thumb data-processing instructions are a subset of the ARM

data-processing instructions

– All Thumb data-processing instructions set the condition codes

• List of data-processing instructions
– ADC, Add with Carry

– ADD, Add

– AND, Logical AND

– ASR, Arithmetic shift right

– BIC, Bit clear

– CMN, Compare negative

– CMP, Compare

– EOR, Exclusive OR

– LSL, Logical shift left

– LSR, Logical shift right

– MOV, Move

– MUL, Multiply

– MVN, Move NOT

– NEG, Negate

– ORR, Logical OR

– ROR, Rotate Right

– SBC, Subtract with Carry

– SUB, Subtract

– TST, Test

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Load and Store Register Instructions

53

• Thumb supports 8 types of load and store register

instructions

• List of load and store register instructions

– LDR

– LDRB

– LDRH

– LDRSB

– LDRSH

– STR

– STRB

– STRH

Load word

Load unsigned byte

Load unsigned halfword

Load signed byte

Load signed halfword

Store word

Store byte

Store halfword

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Load and Store Multiple Instructions

54

• Thumb supports four types of load and store multiple

instructions

• Two (a load and store) are designed to support block copy

• The other two instructions (called PUSH and POP)

implement a full descending stack, and the stack pointer is

used as the base register

• List of load and store multiple instructions

– LDM

– POP

– PUSH

– STM

Load multiple

Pop multiple

Push multiple

Store multiple

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Thumb Register Usage

 In thumb state we can not access all registers
directly.

 Summary of Thumb register usage.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 ARM-Thumb interworking is the name given to the

method of linking ARM and Thumb code together

for both assembly and C/C++. It handles the

transition between the two states.

 To call a Thumb routine from an ARM routine, the

core has to change state. This state change is

shown in the T bit of the cpsr.

 The BX and BLX branch instructions cause a switch

between ARM and Thumb state while branching to

a routine.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Syntax:
 BX Rm

 BLX Rm | label

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 The data processing instructions manipulate data

within registers. They include move instructions,

arithmetic instructions, shifts, logical instructions,

comparison instructions, and multiply instructions.

The Thumb data processing instructions are a

subset of the ARM data processing instructions.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 Syntax:

 <ADC|ADD|AND|BIC|EOR|MOV|MUL|MVN|NEG|O

RR|SBC|SUB> Rd, Rm

 <ADD|ASR|LSL|LSR|ROR|SUB> Rd, Rn

#immediate

 <ADD|MOV|SUB> Rd,#immediate

 <ADD|SUB> Rd,Rn,Rm

 ADD Rd,pc,#immediate

 ADD Rd,sp,#immediate

 <ADD|SUB> sp, #immediate

 <ASR|LSL|LSR|ROR> Rd,Rs

 <CMN|CMP|TST> Rn,Rm

 CMP Rn,#immediate

 MOV Rd,Rn

60

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

61

This example shows a simple Thumb ADD instruction. It takes two low

registers r1 and r2 and adds them together. The result is then placed

into register r0, overwriting the original contents. The cpsr is also

updated.

PRE cpsr = nzcvIFT_SVC

r1 = 0x80000000

r2 = 0x10000000

ADD r0, r1, r2

POST r0 = 0x90000000

cpsr = NzcvIFT_SVC

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Stacks

* A stack is an area of memory which grows as new data is “pushed” onto
the “top” of it, and shrinks as data is “popped” off the top.

* Two pointers define the current limits of the stack.

• A base pointer

– used to point to the “bottom” of the stack (the first location).

• A stack pointer

– used to point the current “top” of the stack.

PUSH

SP

BASE

{1,2,3}

SP 3

2

1

BASE

POP

2

1

Result of

pop = 3

BASE

SP

62MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Stack Operation

63

* Traditionally, a stack grows down in memory, with the last “pushed”
value at the lowest address. The ARM also supports ascending stacks,
where the stack structure grows up through memory.

* The value of the stack pointer can either:

• Point to the last occupied address (Full stack)

– and so needs pre-decrementing (ie before the push)

• Point to the next occupied address (Empty stack)

– and so needs post-decrementing (ie after the push)

* The stack type to be used is given by the postfix to the instruction:

• STMFD / LDMFD : Full Descending stack

• STMFA / LDMFA : Full Ascending stack.

• STMED / LDMED : Empty Descending stack

• STMEA / LDMEA : Empty Ascending stack

* Note: ARM Compiler will always use a Full descending stack.

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Stack Examples
STMFD sp!,

{r0,r1,r3-r5}

r5

r4

r3

r1

r0S

P

Old SP

STMED sp!,

{r0,r1,r3-r5}

r5

r4

r3

r1

r0

S

P

Old SP

r5

r4

r3

r1

r0

STMFA sp!,

{r0,r1,r3-r5}

S

P

Old SP 0x400

0x418

0x3e8

STMEA sp!,

{r0,r1,r3-r5}

r5

r4

r3

r1

r0

S

P

Old SP

64MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Stacks and Subroutines

65

* One use of stacks is to create temporary register workspace for
subroutines. Any registers that are needed can be pushed onto the stack
at the start of the subroutine and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!,{r0-r12,

........

........

lr} ;

;

stack all registers

and the return address

LDMFD sp!,{r0-r12, pc} ; load all the registers

; and return automatically

* See the chapter on the ARM Procedure Call Standard in the SDT
Reference Manual for further details of register usage within
subroutines.

* If the pop instruction also had the ‘S’ bit set (using ‘^’) then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Direct functionality of
Block Data Transfer

66

* When LDM / STM are not being used to implement stacks, it is clearer
to specify exactly what functionality of the instruction is:

• i.e. specify whether to increment / decrement the base pointer, before or

after the memory access.

* In order to do this, LDM / STM support a further syntax in addition to
the stack one:

• STMIA / LDMIA : Increment After

• STMIB / LDMIB : Increment Before

• STMDA / LDMDA : Decrement After

• STMDB / LDMDB : Decrement Before

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Example: Block Copy

• Copy a block of memory, which is an exact multiple of 12 words long
from the location pointed to by r12 to the location pointed to by r13. r14
points to the end of block to be copied.

;

;

;

r12

r14

r13

points

points

points

to

to

to

the

the

the

start of the source data

end of the source data

start of the destination data

loop LDMIA r12!, {r0-r11} ; load 48 bytes

STMIA r13!, {r0-r11} ; and store them

CMP r12, r14 ; check for the end

BNE loop ; and loop until done

• This loop transfers 48 bytes in 31 cycles

• Over 50 Mbytes/sec at 33 MHz

r13

r14

r12

IncreasingM

emory

67MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:

• SWP{<cond>}{B} Rd, Rm, [Rn]

Swap and Swap Byte
Instructions

R

* Thus tmoimplement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction.

Rd

Rn

32

1
temp

68

Memory

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:

• SWP{<cond>}{B} Rd, Rm, [Rn]

Swap and Swap Byte
Instructions

R

* Thus tmoimplement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction.

Rd

Rn

32

1
temp

69

Memory

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

Software Interrupt (SWI)

Cond 1 1 1 1 Comment field (ignored by Processor)

28 2731 24 23 0

Condition Field

* In effect, a SWI is a user-defined instruction.

* It causes an exception trap to the SWI hardware vector (thus causing a
change to supervisor mode, plus the associated state saving), thus
causing the SWI exception handler to be called.

* The handler can then examine the comment field of the instruction to

decide what operation has been requested.

* By making use of the SWI mechansim, an operating system can
implement a set of privileged operations which applications running in
user mode can request.

* .

70MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

 The Thumb software interrupt (SWI) instruction

causes a software interrupt exception. If any

interrupt or exception flag is raised in Thumb

state,the processor automatically reverts back to

ARM state to handle the exception

 Syntax: SWI immediate

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

MCA - Dr.D.Revathi ,AP/ EEE5/3/2024

