SNS COLLEGE OF TECHNOLOGY

An Autonomous Institution
Accredited by NBA - AICTE and Accredited by NAAC - UGC with 'A+' Grade Approved by AICTE, New Delhi \& Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING

> OPTICAL AND MICROWAVE ENGINEERING

III YEAR/ VI SEMESTER

UNIT 5 - OPTICAL NETWORKS

TOPIC -LINK POWER BUDGET

LINK POWER BUDGET

For optimizing link power budget an optical power loss model is to be studied as shown in Fig.
$>$ Lc denotes the losses occur at connector.
$>\quad$ Lsp denotes the losses occur at splices.
$>\alpha \mathrm{f}$ denotes the losses occur in fiber.

POINT TO POINT LINK

All the losses from source to detector comprises the total loss (PT) in the system.
$>$ Link power margin considers the losses due to component aging and temperature fluctuations. Usually a link margin of 6-8 dB is considered while estimating link power budget.

Total optical loss $=$ Connector loss $+($ Splicing loss + Fiber attenuation $)+$ System margin (Pm)
PT = 2lc $+\alpha \mathrm{fL}+$ System margin (Pm) where, L is transmission distance.

Example 1 : Design as optical fiber link for transmitting $15 \mathrm{Mb} / \mathrm{sec}$ of data for a distance of 4 km with BER of 10-9.

Solution :

Bandwidth x Length $=15 \mathrm{Mb} / \mathrm{sec} \mathrm{x} 4 \mathrm{~km}=(60 \mathrm{Mb} / \mathrm{sec}) \mathrm{km}$
Selecting optical source : LED at 820 nm is suitable for short distances.
The LED generates - 10 dBm optical power.
Selecting optical detector : PIN-FER optical detector is reliable and has 50 dBm sensitivity.
Selection optical fiber : Step-index multimode fiber is selected. The fiber has bandwidth length product of $100(\mathrm{Mb} / \mathrm{s}) \mathbf{k m}$.

Links power budget :

Assuming :
Splicing loss $\mathrm{ls}=0.5 \mathrm{~dB} /$ slice
Connector loss $\mathrm{lc}=1.5 \mathrm{~dB}$
System link powr margin $\mathrm{Pm}-8 \mathrm{~dB}$
Fiber attenuation $\alpha f=6 \mathrm{~dB} / \mathrm{km}$
Actual total loss $=(2 \times \mathrm{lc})+\alpha \mathrm{fL}+\mathrm{Pm}$
$\mathrm{PT}=(2 \times 1.5)+(6 \times 4)+8$
$\mathrm{PT}=35 \mathrm{~dB}$
Maximum allowable system loss :
Pmax = Optical source output power- optical receiver sensitivity
$\operatorname{Pmax}=-10 \mathrm{dBm}-(-50 \mathrm{dBm})$
Pmax $=40 \mathrm{dBm}$
Since actual losses in the system are less than the allowable loss, hence the system is functional.
-Example 2 :
A transmitter has an output power of 0.1 mW . It is used with a fiber having $\mathrm{NA}=$ 0.25 , attenuation of $6 \mathrm{~dB} / \mathrm{km}$ and length 0.5 km .

The link contains two connectors of 2 dB average loss. The receiver has a minimum acceptable power (sensitivity) of -35 dBm . The designer has allowed a 4 dB margin. Calculate the link power budget.

Solution :

Source power Ps $=0.1 \mathrm{~mW}$
$\mathrm{Ps}=-10 \mathrm{dBm}$
Since NA $=0.25$
Coupling loss $=-10 \log$ (NA2)
$=-10 \log (0.252)=12 \mathrm{~dB}$
Fiber loss $=\alpha f \times \mathrm{L}$
lf $=(6 \mathrm{~dB} / \mathrm{km})(0.5 \mathrm{~km})$
lf $=3 \mathrm{~dB}$
Connector loss $=2(2 \mathrm{~dB})$
$\mathrm{lc}=4 \mathrm{~dB}$
Design margin $\mathrm{Pm}=4 \mathrm{~dB}$
Actual output power Pout $=$ Source power $-(\Sigma$ Losses $)$
Pout $=10 \mathrm{dBm}-[12 \mathrm{~dB}+3+4+4]$, Pout $=\mathbf{- 3 3} \mathbf{~ d B m}$
Since receiver sensitivity given is -35 dBm .
i.e. $\operatorname{Pmin}=\mathbf{- 3 5} \mathbf{d B m}$

As Pout > Pmin, the system will perform adequately over the system operating life.

Example 3 : In a fiber link the laser diode output power is 5 dBm , source-fiber coupling loss $=3 \mathrm{~dB}$, connector loss of 2 dB and has 50 splices of 0.1 dB loss. Fiber attenuation loss for 100 km is 25 dB , compute the loss margin for i) APD receiver with sensitivity -40 dBm ii) Hybrid PINFET high impedance receiver with sensitivity - 32 dBm .

Solution : Power budget calculations

Source output power 5 dBm
Source fiber coupling loss 3 dB
Connector loss 2 dB
Connector loss $\quad 5 \mathrm{~dB}$
Fiber attenuation 25 Db
Total loss $\mathbf{3 5} \mathbf{d B}$
Available power to receiver : $(5 \mathrm{dBm}-35 \mathrm{dBm})-30 \mathrm{dBm}$
i) APD receiver sensitivity -40 dBm
ii) Loss margin $[-40-(-30)] 10 \mathrm{dBm}$
ii) H-PIN FET high0impedance receiver -32 dBm

Loss margin [-32-(-30)] 2 dBm

THANK YOU

