

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 641 035, Tamil Nadu

DEPARTMENT OF AEROSPACE ENGINEERING

BASIC AERODYNAMICS BY NEHRU K ASSISTANT PROFESSOR **AEROSPACE ENGINEERING**

23AS101FAS/NEHRU.K/AERO/SNSCT

16 April 2024

WHAT IS AERODYNAMICS?

• **DEFINITION**:

□ Aerodynamics is the study of how air flows around objects, particularly as it relates to the

movement of aircraft through the atmosphere.

• IMPORTANCE:

□ Understanding aerodynamics is crucial for designing efficient aircraft and achieving optimal

performance during flight.

23AS101FAS/NEHRU.K/AERO/SNSCT

16 April 2024

IMPORTANCE OF AERODYNAMICS

• EFFICIENT FLIGHT:

Aerodynamics helps in achieving efficient flight by reducing drag and improving lift.

• FUEL ECONOMY:

Reduced drag means less fuel consumption, which is crucial for long-distance flights.

• STABILITY AND CONTROL:

Proper aerodynamic design ensures stability and control of the aircraft in various flight conditions.

BASIC TERMS

• AIRFOIL:

The shape of a wing or blade that is designed to produce lift when air flows over it.

• LIFT:

The force that acts perpendicular to the direction of airflow and enables an aircraft to rise and stay airborne.

• DRAG:

The resistance to motion through the air that opposes the aircraft's forward motion.

IMPORTANCE OF AIRFOIL DESIGN IN AERODYNAMICS

Applications:

• Airfoil design is crucial in various applications such as aircraft wings, helicopter rotor blades, wind turbine blades, and hydrofoils.

<u>Safety:</u>

• Proper airfoil design ensures safe and stable flight by controlling airflow over the aircraft surfaces.

BERNOULLI'S PRINCIPLE

• **DEFINITION**:

Bernoulli's principle states that an increase in the speed of a fluid (air, in this case) occurs simultaneously with a decrease in pressure.

• APPLICATION TO FLIGHT:

□ Faster-moving air over the top of a wing creates lower pressure, while slower-moving air below the wing creates higher pressure, resulting in lift.

HOW WINGS GENERATE LIFT

• SHAPE OF THE WING (AIRFOIL):

The curved shape of the wing (airfoil) is designed to create a pressure difference between the upper and lower surfaces, resulting in lift.

• ANGLE OF ATTACK:

The angle between the wing chord line and the direction of the oncoming air. A greater angle of attack can increase lift up to a certain point before causing a stall.

Relative Wind

α = Angle of Attack

TYPES OF DRAG

• PARASITIC DRAG:

Form drag: Drag caused by the shape of the aircraft.

Skin friction: Drag caused by the friction between the air and the aircraft's surface.

Interference drag: Drag caused by the intersection of airflow streams around the aircraft.

• INDUCED DRAG:

Drag that is created as a by-product of lift. It occurs as the wing generates lift by deflecting air downwards.

Drag

CONTROL SURFACES

• AILERONS:

□ Located on the trailing edge of the wings, ailerons control the roll of the aircraft by moving in opposite directions.

• ELEVATORS:

□ Located on the horizontal tail surface, elevators control the pitch of the aircraft by moving up and down.

• RUDDER:

□ Located on the vertical tail surface, the rudder controls the yaw of the aircraft by moving left and right.

16 April 2024

- 2. Rudder

STALL

• **DEFINITION**:

A stall occurs when the wing's angle of attack is too high, causing the airflow to separate from the wing and the wing to lose lift.

• EFFECTS:

Loss of lift, which can lead to a loss of control and potentially result in a spin if not corrected.

LIFT-TO-DRAG RATIO

• **DEFINITION**:

- □ Lift-to-Drag ratio (L/D) is the amount of lift generated
 - by a wing compared to the amount of drag it produces.

IMPORTANCE:

□ A higher L/D ratio indicates a more efficient wing, resulting in better fuel economy and longer gliding distance.

L - Lift D = Drag W - Weight

WINGTIP VORTICES

• **DEFINITION**:

□ Wingtip vortices are circular patterns of rotating air that form at the wingtips of an aircraft as it generates lift.

EFFECT:

□ Wingtip vortices can cause induced drag and are a hazard to following aircraft, particularly during takeoff and landing.

HIGH LIFT DEVICES

• DEFINITION:

 High lift devices, such as flaps and slats, are used to increase the lift produced by the wings at low speeds during takeoff and landing.

TYPES:

- □ Flaps: Increase the wing area and curvature
- □ Slats: Extend the leading edge of the wing

SUPERSONIC AERODYNAMICS

• **DEFINITION**:

□ Supersonic aerodynamics deals with the behavior of airflow around an object when the speed of the object is greater than the speed of sound.

CHALLENGES:

□ Shock waves, drag, and heating of the aircraft structure.

CONCLUSION

- KEY POINTS:
 - AERODYNAMICS IS CRUCIAL FOR FLIGHT
 EFFICIENCY AND SAFETY.
 - UNDerstanding basic aerodynamic principles is key for pilots and aircraft engineers.
 - Continued research and development in aerodynAMICS LEAD To advancements in aviation technology.

Thank you

16 April 2024

23AS101FAS/NEHRU.K/AERO/SNSCT

15/15