
 

 

 

Interrupt Priorities 

The 8051 offers two levels of interrupt priority: high and low. By using interrupt priorities you 

may assign higher priority to certain interrupt conditions. For example, you may have enabled 

Timer 1 Interrupt which is automatically called every time Timer 1 overflows. Additionally, you 

may have enabled the Serial Interrupt which is called every time a character is received via the 

serial port. However, you may consider that receiving a character is much more important than 

the timer interrupt. In this case, if Timer 1 Interrupt is already executing you may wish that the 

serial interrupt itself interrupts the Timer 1 Interrupt. When the serial interrupt is 

complete, search control passes back to Timer 1 Interrupt and finally back to the main program. 

You may accomplish this by assigning a high priority to the Serial Interrupt and a low priority to 

the Timer 1 Interrupt. 

What Happens When an Interrupt Occurs? 

When an interrupt is triggered, the following actions are taken automatically by the 

microcontroller: 

·        The current Program Counter is saved on the stack, low-byte first. 

·        Interrupts of the same and lower priority are blocked. 

·        In the case of Timer and External interrupts, the corresponding interrupt flag is set. 

·        Program execution transfers to the corresponding interrupt handler vector address. 

·        The Interrupt Handler Routine executes. Take special note of the third step: If theinterrupt 

being handled is a Timer or External interrupt, the microcontroller automatically clearsthe 

interrupt flag before passing search control to your interrupt handler routine. 

  

What Happens When an Interrupt Ends? 

An interrupt ends when your program executes the RETI instruction. When the RETI instruction 

is executed the following actions are taken by the microcontroller: 

·        Two bytes are popped off the stack into the Program Counter to restore normal program 

execution. 

·        Interrupt status is restored to its pre-interrupt status. 

  

LCD (LIQUID CRYSTAL DISPLAY) INTERFACE 

LCDs can display numbers, characters, and graphics. To produce a proper display, the 

information has to be periodically refreshed. This can be done by the CPU or internally by the 

LCD device itself. Incorporating a refreshing controller into the LCD, relieves the CPU of this 

task and hence many LCDs have built-in controllers. These controllers also facilitate flexible 

programming for characters and graphics. Table 5.1 shows the pin description of an LCD. from 

Optrex. 

https://www.brainkart.com/article/8051-Interrupt-Programming_7889/
https://www.brainkart.com/article/8051-Interrupt-Programming_7889/


 

 

 

 

Table 5.4.1 Pin description of LCD 

 

• Vss and VDD provide +5v and ground, V0 is used for controlling LCD contrast. 

• If RS=0, the instruction command register is selected, allowing the user to send a command 

such as clear display, cursor at home, etc. 

• If RS=1 the data register is selected, allowing the user to send data to be displayed on the LCD. 

• R/W input allows the user to Read/ Write the information to the LCD. 

• The enable pin is used by the LCD to latch information presented to its data pins. 

• The 8-bit data pins are used to send information to LCD. 



 

 

 

LCD COMMAND CODES 

The LCD’s internal controller can accept several commands and modify the display 

accordingly. These commands would be things like: 

✓ Clear screen 

✓ Return home 

✓ Decrement/Increment cursor 

After writing to the LCD, it takes some time for it to complete its internal operations. During this 

time, it will not accept any new commands or data. Figure 5.4.1 shows the command codes of 

LCD and Figure 5.4.2 shows the LCD interfacing. We need to insert a time delay between any 

two commands or data sent to LCD. 

 

LCD Command Codes 



 

 

 

 

LCD Connections to 8051 

KEYBOARD INTERFACING WITH 8051 

 

4X 4 KEYBOARD 

Figure 5.4.31 shows a 4 x4 matrix connected to two ports. 

• The rows are connected to an output port(Port 1) and the columns are connected to an input 

port. (Port 2) 

• If no key has been pressed, reading the input port will yield 1s for all columns since they are all 

connected to high (Vcc). 

• If all the rows are grounded and a key is pressed, one of the columns will have 0 since the 

key pressed provides the path to ground. 

• It is the function of the microcontroller to scan the keyboard continuously to detect and 

identify the key pressed. 

 

Figure 5.4.3 Matrix Keyboard Connections to Ports 

[Source: “The 8051Microcontroller and Embedded Systems: Using Assembly and C” by 

Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin 

McKinlay] 


