

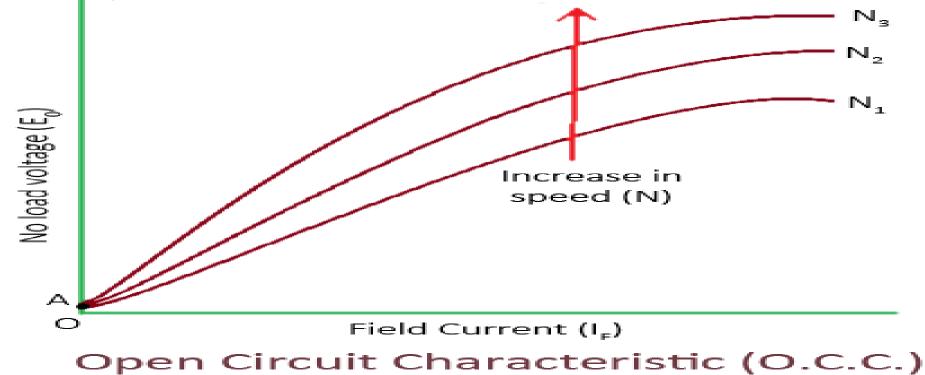
SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade(III cycle) Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

IYEAR/ II SEMESTER **20 ECT201 Basics of Electrical Engineering and Instrumentation**

TOPIC-DC GENERATOR - Characteristics


4.3.2024/DC Generator/20ECT201 – Basics of Electrical Engineering and Instrumentation/S.KAVIPRIYA/ECE/SNSCT

Characteristics of DC generator

- **Open Circuit Characteristic (O.C.C.)**,
- **Internal or Total Characteristic**
- **External Characteristic.** iii)
- **Dpen Circuit Characteristic (O.C.C.)**,
 - This characteristic shows the relation between generated emf at no load (E_0) and the field current (I) at a given fived sneed

- N,
- N,
- N_1

- he data for O.C.C. curve is obtained by operating the generator at n and keeping a constant speed.
- Field current is gradually increased and the corresponding terminal voltage is recorded.
- **2.** Internal Or Total Characteristic (E/I_{a})
 - An internal characteristic curve shows the relation between the on-load generated emf (Eg) and the armature current (I_{a}) . The on-load generated emf Eg is always less than E_0 due to the armature reaction.
- **B.** External Characteristic. (V/I_{I})
 - An external characteristic curve shows the relation between terminal voltage (V) and the load current (I_1) .
 - Terminal voltage V is less than the generated emf Eg due to voltage drop in the armature circuit.

THANK YOU

4.3.2024/DC Generator/20ECT201 – Basics of Electrical Engineering and Instrumentation/S.KAVIPRIYA/ECE/SNSCT

