

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

19ECT201 – ELECTRICAL ENGINEERING & INSTRUMENTATION II YEAR III SEM

UNIT 3 – INDUCTION MACHINES

TOPIC 2- Three phase induction motor

U3- Three Phase Induction motor/19ECT201-EEI/S.KAVIPRIYA/ECE/SNSCT

three-phase induction motors are the most widely ≻The used electric motors in the industry.

 \succ They work on the principle of electromagnetic induction. > Due to the similarity in the <u>working principle of the transformer</u>, it is also known as the **rotating transformer**. \succ They run at essentially constant speed from no load to full load. > However, the speed is frequency-dependent and consequently, these motors are easily adapted to speed control. \triangleright We usually prefer <u>DC motors</u> when large speed variations are required

Three phase Induction motor Construction

Stator:

➤The stator consists of a steel frame that encloses a hollow, cylindrical core made up of thin laminations of silicon steel to reduce hysteresis and eddy current losses.

➤A number of evenly spaced slots are provided on the inner periphery of the laminations.

➤The insulated conductors are connected to form a balanced 3-phase star or delta connected circuit.

Three phase Induction motor Construction

Rotor:

The rotor, mounted on a shaft, is a hollow laminated core having slots on its outer periphery. The winding placed in these slots (called rotor winding) may be one of the following two types: Squirrel Cage Type ► Wound Rotor Type

Working Principle of 3 phase Induction motor

working of the three-≻The phase induction motor is based on the **Electromagnetic induction** three-phase stator When winding of an induction motor is energized from a 3 phase supply, a rotating magnetic field is set up which rotates around the stator at synchronous speed (N_s) .

A portion of rotating magnetic field in a three-phase induction motor

Working- Three phase Induction motor

 \succ The rotating field passes through the air gap and cuts the rotor conductors, which are stationary.

- ➤<u>An EMF</u> gets induced in every rotor conductor due to the relative speed between the rotating magnetic flux and the stationary rotor > The current-carrying rotor conductors are placed in the magnetic field produced by the stator.
- >Consequently, a **mechanical force** acts on the rotor conductors. The sum of the mechanical forces on all the rotor conductors produces
- a torque which tends to move the rotor in the same direction as the rotating field.

Applications of Three Phase Induction motor

 \triangleright They are used for loads that requires speed control.

> Typical applications of wound rotor or slip ring induction motors are crushers, plunger pumps, cranes & hoists, elevators, compressors and conveyors

Slip in Induction motor

> In practice, the rotor can never reach the speed of stator flux. > The friction and windage would immediately cause the rotor to slow down.

 \geq Hence, the rotor speed (N) is always less than the stator field speed (N_s). This difference in speed depends upon load on the motor. > The difference between the synchronous speed N_s of the rotating stator field and the actual rotor speed N is called **slip in a three-phase** induction motor.

> Slip is usually expressed as a percentage of synchronous speed i.e., >Slip, s = $(N_s - N)/N_s \times 100\%$

≻The quantity N s – N is sometimes called **slip speed**. \succ When the rotor is stationary (i.e., N = 0), slip, s = 1 or 100 %.

TYPES OF THREE PHASE INDUCTION MOTOR

SQUIRREL CAGE INDUCTION MOTOR

- Most of the application of industrial as well as domestic are this type of induction motor.
- Its construction is simple and rugged.
- Cheap copare to slipring IM
- Maintainance is easy
- Cost is less compare to slipring IM
- Can use at explosive area 1
- Starting torque is low compare to slip ring IM
- Application:-.
- Leath machine, Compressors, centrifugal pump, in agriculture etc. where cost is most important factor

SLIP RING INDUCTION MOTOR

- It has high starting torque compare to squirrel cage IM
- Construction is complicated
- Maintanance cost is high compare to squirrel cage IM
- Starter requires compulsory
- Can not use at explosive area
- Application:-
- Crane, hoist, lift and where high starting torque is required

Thank You

U3- Three Phase Induction motor/19ECT201-EEI/S.KAVIPRIYA/ECE/SNSCT

