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  CO  

1 What is the most general unifier of the terms p(x, y) and p(a, b)? 
          General unifier = { x/a, y/b } 

CO2 Und 

2 In the context of forward chaining, what is a lift? 
            A lift in forward chaining is the process of adding new inferred facts or rules to the 

agenda for further evaluation. 

CO2 Ana 

3 How does the partial-order planning algorithm resolve threats during the planning 

process? 
           The partial-order planning algorithm resolves threats by either introducing ordering 

constraints between actions or by adding additional actions to the plan to address the 

conflicts. 

CO3 Ana 

4 Define what is meant by a "threat" in the context of partial-order planning. 
         In partial-order planning, a "threat" refers to a potential conflict where the effects of 

one action could undo or interfere with the preconditions of another action in the plan. 

CO3 Und 

5 Describe the two types of nodes that alternate in levels of a planning graph and their 

purpose. 
1. Literal Level Node 

2. Action Level Nodes 

CO3 Rem 

 PART - B (2 x 13 = 26 Marks, 1 X 14 = 14 Marks) 

 
6 (a) Starting with the following knowledge base and query, show the steps of 

forward chaining to derive the goal: KB: p(a), q(x) ∧ r(x) → s(x), s(x) ∧ t(x) → 

u(x) 

1. Initial State: 
 

Known facts: 

p(a) (from the KB) 

2. Checking Rules: 
 

We have two rules in the KB: 

 

Rule 1: q(x) ∧ r(x) → s(x) 

Rule 2: s(x) ∧ t(x) → u(x) 

Since we only have p(a) currently, neither rule can be applied yet. 

 

3. No Match, Continue Checking: 

 
We haven't derived anything new, so we keep checking the rules. 

 

4. No New Facts, Termination: 

 

There are no facts in the KB that match the variables in the first parts (premises) of 

the rules. 

CO2 Ana 

  (Or)   

  (b) Analysis the importance of factoring and subsumption in resolution-based 

theorem proving, and how they can improve efficiency. 
CO2 Ana 

A 



Factoring identifies and removes redundant information within a single clause. 

Imagine a clause like "A ∨ B ∨ C ∨ (A ∧ B)". The implication of "(A ∧ B)" is 

already captured by "A ∨ B". Factoring eliminates this redundancy, resulting in a 

simpler clause like "A ∨ B ∨ C". 

Subsumption identifies a clause that is logically implied by another clause. For 

instance, the clause "A ∨ B" subsumes "A ∨ B ∨ C" because any situation satisfying 

"A ∨ B" also satisfies "A ∨ B ∨ C". Subsumption allows us to discard the subsumed 

clause, focusing on the more general one. 

These techniques improve efficiency in resolution-based theorem proving by: 

 Reducing Search Space: By eliminating redundant information and 

subsumed clauses, the overall number of clauses to be considered during the 
proof search process is reduced. This leads to faster exploration of the 

search space and potentially quicker discovery of a proof (if one exists). 

 Focus on Relevant Information: Factoring ensures that clauses only 

contain essential information, while subsumption directs the reasoning 

process towards more general clauses with broader implications. This helps 

the theorem prover concentrate on the most relevant aspects of the problem. 

 

7  (a) Propose a strategy for continuous planning and monitoring to handle 

unexpected events for an autonomous robot operating in an office mail delivery 

scenario. 

Planning: 

1. High-Level Planning: Create a master plan for the entire delivery route 

before deployment. This includes: 

o Map Integration: Load a detailed map of the office, including 

designated delivery points and potential obstacles. 

o Delivery Schedule: Integrate delivery schedules with the master 

plan, optimizing route efficiency. 

o Contingency Plans: Pre-program basic responses for common 

unexpected events. These could include:  

 Doorways blocked - Find alternate routes or request 

assistance. 

 Low battery - Navigate to the nearest charging station. 

 Object in path - Replan route or carefully maneuver 

around the obstacle. 

2. Dynamic Replanning: Implement a dynamic replanning module that 

constantly monitors sensor data and updates the plan in real-time. This 

includes: 

o Sensor Fusion: Combine data from LiDAR, cameras, and other 
sensors to build a comprehensive picture of the environment. 

o Real-time Path Adjustment: Use sensor data to identify and 

avoid obstacles not present in the initial plan. 

o Priority Management: Prioritize tasks based on urgency (e.g., 

critical deliveries) and adapt the plan accordingly. 

Monitoring: 

1. Sensor Data Analysis: Continuously analyze sensor data for anomalies that 

might indicate unexpected events. This includes: 

o Object Detection: Identify and classify unexpected objects in the 

CO2 App 



robot's path. 

o Movement Detection: Detect people or moving objects that could 

cause collisions. 

o Environmental Changes: Monitor for changes in lighting, 

temperature, or other environmental factors that could impact 

navigation. 

2. Decision Making: Based on sensor data analysis, the robot should be able 

to make informed decisions: 

o Continue with Plan: If no anomalies are detected, continue with 

the current plan. 

o Trigger Replanning: If an unexpected event is detected, trigger a 

replanning process to adapt the route or task. 

o Request Assistance: For complex situations beyond its 

capabilities, request assistance from a human operator. 

3. Learning and Adaptation: Continuously update the robot's knowledge 

base with encountered situations and successful responses. This allows the 

robot to improve its ability to handle unexpected events in the future. 

 

  (Or)   

  (b) For a simple logistics planning problem, construct the first three levels of the 

planning graph given the initial state, actions, and goal. 

Initial State: 

 Truck is at the Warehouse (W). 

 Package A and Package B are both at the Warehouse (W). 

Actions: 

 Pickup Package A (W, A) 

 Pickup Package B (W, B) 

 Deliver Package A (A) 

 Deliver Package B (B) 

Goal: 

 Truck is at any location (Doesn't matter where as long as deliveries are 

done). 

 Package A is delivered (Delivered to Customer A). 

 Package B is delivered (Delivered to Customer B). 

Planning Graph (First 3 Levels): 

Level 0 (Initial State): 

State: W (Truck at Warehouse, Packages A & B at Warehouse) 

Level 1 (Actions applicable to Initial State): 

W -> (Pickup Package A) -> A1 

W -> (Pickup Package B) -> B1 

Level 2 (Possible outcomes of Level 1 actions): 

CO3 App 



State A1 (Result of Pickup Package A): 

 Truck: A (Truck now has Package A) 

 Package A: In Transit (Picked up from Warehouse) 

 Package B: W (Still at Warehouse) 

State B1 (Result of Pickup Package B): 

 Truck: B (Truck now has Package B) 

 Package A: W (Still at Warehouse) 

 Package B: In Transit (Picked up from Warehouse) 

Explanation: 

 Level 0 represents the initial state of the problem. 

 Level 1 shows the possible actions (picking up packages) that can be taken 

from the initial state. 

 Level 2 shows the resulting states after each action is applied. In this case, 

picking up Package A leads to state A1 and picking up Package B leads to 

state B1. 

 

8 

 

 

(a) 

 

 

Suppose the route planning is formulated as a state-space search problem. What 

would be an appropriate search algorithm (e.g. breadth-first, depth-first, A*, 

etc.) and heuristic function for finding efficient drone delivery routes? Justify 

your choice. 

 Breadth-First Search (BFS): While BFS guarantees finding an optimal 

solution, it explores all states at a given depth before moving to the next. This 

can be inefficient for route planning as BFS might explore many irrelevant 

paths before finding the optimal one, especially for large delivery areas. 

 Depth-First Search (DFS): DFS explores a single path deeply until it 

reaches a goal state or a dead end. This can be problematic for drone 

deliveries as DFS might get stuck in a long, inefficient route while potentially 

shorter paths exist unexplored. 

 A Search:* A* search combines the benefits of BFS and DFS. It uses a 

heuristic function to estimate the cost (distance or time) of reaching the goal 

state from any state. A* prioritizes exploring states with a lower total cost 

(actual travel cost + heuristic estimate). This makes A* efficient as it focuses 

on promising routes while guaranteeing an optimal solution like BFS. 

Heuristic Function for Drone Delivery Routes 
An appropriate heuristic function (h(n)) for drone delivery routes should estimate the 

remaining cost to reach the final destination from a current state (n). Here are two 
options: 

1. Straight-Line Distance Heuristic: This calculates the straight-line distance 

between the current delivery location and the final destination. This is a 

simple and fast heuristic but might overestimate the actual travel cost due to 

obstacles or no-fly zones. 

2. Nearest Neighbor Heuristic: This estimates the cost by calculating the sum 

of straight-line distances between remaining delivery locations, considering 

the current location and the final destination as part of the remaining 

deliveries. This provides a more realistic estimate than the straight-line 

approach but might not account for the most efficient order of deliveries. 

 

   CO3 Eva 



  (Or)   

 (b) Imagine you have a robotic arm designed to make coffee. Specify the 
preconditions and effects of each action (e.g., precondition for turn on kettle is 

the kettle is empty). 

Grinding Beans: 

 Precondition:  
o Coffee beans are loaded in the bean hopper. 

o Grinder is properly assembled and plugged in. 

 Effect:  
o A specific amount of coffee grounds are dispensed into the 

portafilter (or filter basket). 

Filling Portafilter: 

 Precondition:  
o Portafilter is attached to the grinder. 

o Coffee grounds bin is empty (or ready to receive grounds). 

 Effect:  
o Portafilter is filled with the desired amount of coffee grounds. 

Tamping Coffee: 

 Precondition:  
o Portafilter is filled with coffee grounds. 

o Tamper is attached to the robotic arm. 

 Effect:  
o Coffee grounds are evenly tamped in the portafilter for optimal 

extraction. 

Positioning Portafilter: 

 Precondition:  
o Portafilter is filled and tamped with coffee grounds. 

o Espresso machine is on and preheated. 

 Effect:  
o Portafilter is locked into the espresso machine's group head. 

Brewing Coffee: 

 Precondition:  
o Portafilter is positioned in the espresso machine. 

o Water reservoir is filled. 

 Effect:  
o Hot water is forced through the coffee grounds, extracting espresso 

into a cup placed beneath the portafilter. 

Steaming Milk: 

 Precondition:  
o Milk container is filled with cold milk. 

o Steam wand is attached to the robotic arm. 

 Effect:  
o Milk is frothed and heated using the steam wand. 

Cleaning: 

 Precondition:  
o Coffee making process is complete. 

o Cleaning solution is available. 

 Effect:  
o Portafilter, steam wand, and drip tray are cleaned to remove coffee 

residue. 
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