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UNIT 1  

INTRODUCTIONTO ARTIFICIAL INTELLIGENCE 

 Introduction–Definition –Future of Artificial Intelligence –Characteristics of Intelligent 

Agents– Typical Intelligent Agents –Problem Solving Approach to Typical AI problems. 

1.1 INTRODUCTION 

INTELLIGENCE ARTIFICIAL INTELLIGENCE 

It is a natural process. It is programmed by humans. 

It is actually hereditary. It is not hereditary. 

Knowledge is required for intelligence. KB and electricity are required to generate 

output. 

No human is an expert. We may get better 

solutions from other humans. 

Expert systems are made which aggregate 

many person’s experience and ideas. 

 

1.2 DEFINITION 

The study of how to make computers do things at which at the moment, people are better. 

“Artificial Intelligence is the ability of a computer to act like a human being”. 

• Systems that think like humans 

• Systems that act like humans 

• Systems that think rationally. Systems that act rationally. 

 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories 
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(a) Intelligence - Ability to apply knowledge in order to perform better in an environment. 

(b) Artificial Intelligence - Study and construction of agent programs that perform well in 

a given environment, for a given agent architecture. 

(c) Agent - An entity that takes action in response to precepts from an environment.  

(d) Rationality - property of a system which does the “right thing” given what it knows. 

(e) Logical Reasoning - A process of deriving new sentences from old, such that the new 

sentences are necessarily true if the old ones are true. 

Four Approaches of Artificial Intelligence: 

➢ Acting humanly: The Turing test approach. 

➢ Thinking humanly: The cognitive modelling approach. 

➢ Thinking rationally: The laws of thought approach. 

➢ Acting rationally: The rational agent approach. 

1.3 ACTING HUMANLY: THE TURING TEST APPROACH 

The Turing Test, proposed by Alan Turing (1950), was designed to provide a 

satisfactory operational definition of intelligence. A computer passes the test if a human 

interrogator, after posing some written questions, cannot tell whether the written responses 

come from a person or from a computer. 

 

Figure 1.2 Turing Test 

 

• natural language processing to enable it to communicate successfully in English; 

• knowledge representation to store what it knows or hears; 

• automated reasoning to use the stored information to answer questions and to draw 

new conclusions 

• machine learning to adapt to new circumstances and to detect and extrapolate patterns. 
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Total Turing Test includes a video signal so that the interrogator can test the subject’s 

perceptual abilities, as well as the opportunity for the interrogator to pass physical objects 

“through the hatch.” To pass the total Turing Test, the computer will need 

• computer vision to perceive objects, and robotics to manipulate objects and move 

about. 

Thinking humanly: The cognitive modelling approach 

Analyse how a given program thinks like a human, we must have some way of 

determining how humans think. The interdisciplinary field of cognitive science brings together 

computer models from AI and experimental techniques from psychology to try to construct 

precise and testable theories of the workings of the human mind. 

Although cognitive science is a fascinating field in itself, we are not going to be 

discussing it all that much in this book. We will occasionally comment on similarities or 

differences between AI techniques and human cognition. Real cognitive science, however, is 

necessarily based on experimental investigation of actual humans or animals, and we assume 

that the reader only has access to a computer for experimentation. We will simply note that AI 

and cognitive science continue to fertilize each other, especially in the areas of vision, natural 

language, and learning. 

Thinking rationally: The “laws of thought” approach 

The Greek philosopher Aristotle was one of the first to attempt to codify ``right 

thinking,'' that is, irrefutable reasoning processes. His famous syllogisms provided patterns for 

argument structures that always gave correct conclusions given correct premises. 

For example, ``Socrates is a man; all men are mortal; therefore Socrates is mortal.'' 

These laws of thought were supposed to govern the operation of the mind, and initiated 

the field of logic. 

Acting rationally: The rational agent approach 

Acting rationally means acting so as to achieve one's goals, given one's beliefs. An 

agent is just something that perceives and acts. 

The right thing: that which is expected to maximize goal achievement, given the 

available information 

Does not necessary involve thinking. 

For Example - blinking reflex- but should be in the service of rational action. 
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1.4 FUTURE OF ARTIFICIAL INTELLIGENCE 

• Transportation: Although it could take a decade or more to perfect them, autonomous 

cars will one day ferry us from place to place. 

• Manufacturing: AI powered robots work alongside humans to perform a limited range 

of tasks like assembly and stacking, and predictive analysis sensors keep equipment 

running smoothly. 

• Healthcare: In the comparatively AI-nascent field of healthcare, diseases are more 

quickly and accurately diagnosed, drug discovery is sped up and streamlined, virtual 

nursing assistants monitor patients and big data analysis helps to create a more 

personalized patient experience. 

• Education: Textbooks are digitized with the help of AI, early-stage virtual tutors assist 

human instructors and facial analysis gauges the emotions of students to help determine 

who’s struggling or bored and better tailor the experience to their individual needs. 

• Media: Journalism is harnessing AI, too, and will continue to benefit from it. 

Bloomberg uses Cyborg technology to help make quick sense of complex financial 

reports. The Associated Press employs the natural language abilities of Automated 

Insights to produce 3,700 earning reports stories per year — nearly four times more 

than in the recent past 

• Customer Service: Last but hardly least, Google is working on an AI assistant that can 

place human-like calls to make appointments at, say, your neighborhood hair salon. In 

addition to words, the system understands context and nuance. 

1.5 CHARACTERISTICS OF INTELLIGENT AGENTS 

Situatedness 

The agent receives some form of sensory input from its environment, and it performs 

some action that changes its environment in some way. 

Examples of environments: the physical world and the Internet. 

• Autonomy 

The agent can act without direct intervention by humans or other agents and that it has 

control over its own actions and internal state. 

• Adaptivity 

The agent is capable of 

(1) reacting flexibly to changes in its environment; 

(2) taking goal-directed initiative (i.e., is pro-active), when appropriate; and 

(3) Learning from its own experience, its environment, and interactions with others. 

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
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• Sociability 

The agent is capable of interacting in a peer-to-peer manner with other agents or humans 

1.6 AGENTS AND ITS TYPES 

 

Figure 1.3 Agent types 

 

An agent is anything that can be viewed as perceiving its environment through sensors 

and acting upon that environment through actuators. 

• Human Sensors: 

• Eyes, ears, and other organs for sensors. 

• Human Actuators: 

• Hands, legs, mouth, and other body parts. 

• Robotic Sensors: 

• Mic, cameras and infrared range finders for sensors 

• Robotic Actuators: 

• Motors, Display, speakers etc An agent can be: 

Human-Agent: A human agent has eyes, ears, and other organs which work for sensors 

and hand, legs, vocal tract work for actuators. 

Robotic Agent: A robotic agent can have cameras, infrared range finder, NLP for 

sensors and various motors for actuators. 

Software Agent: Software agent can have keystrokes, file contents as sensory input 

and act on those inputs and display output on the screen. 

Hence the world around us is full of agents such as thermostat, cell phone, camera, and 

even we are also agents. Before moving forward, we should first know about sensors, effectors, 

and actuators. 

Sensor: Sensor is a device which detects the change in the environment and sends the 

information to other electronic devices. An agent observes its environment through sensors. 
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Actuators: Actuators are the component of machines that converts energy into motion. 

The actuators are only responsible for moving and controlling a system. An actuator can be an 

electric motor, gears, rails, etc. 

Effectors: Effectors are the devices which affect the environment. Effectors can be 

legs, wheels, arms, fingers, wings, fins, and display screen. 

 

Figure 1.4 Effectors 

 

1.7 PROPERTIES OF ENVIRONMENT 

An environment is everything in the world which surrounds the agent, but it is not a 

part of an agent itself. An environment can be described as a situation in which an agent is 

present. 

The environment is where agent lives, operate and provide the agent with something to 

sense and act upon it. 

Fully observable vs Partially Observable: 

If an agent sensor can sense or access the complete state of an environment at each 

point of time then it is a fully observable environment, else it is partially observable. 

A fully observable environment is easy as there is no need to maintain the internal state 

to keep track history of the world. 

An agent with no sensors in all environments then such an environment is called as 

unobservable. 

Example:  chess   –   the   board   is   fully   observable, as are opponent’s moves. Driving 

– what is around the next bend is not observable and hence partially observable. 

1. Deterministic vs Stochastic 

• If an agent's current state and selected action can completely determine the next state 

of the environment, then such environment is called a deterministic environment. 
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• A stochastic environment is random in nature and cannot be determined completely by 

an agent. 

• In a deterministic, fully observable environment, agent does not need to worry about 

uncertainty. 

2. Episodic vs Sequential 

• In an episodic environment, there is a series of one-shot actions, and only the current 

percept is required for the action. 

• However, in Sequential environment, an agent requires memory of past actions to 

determine the next best actions. 

3. Single-agent vs Multi-agent 

• If only one agent is involved in an environment, and operating by itself then such an 

environment is called single agent environment. 

• However, if multiple agents are operating in an environment, then such an environment 

is called a multi-agent environment. 

• The agent design problems in the multi-agent environment are different from single 

agent environment. 

4. Static vs Dynamic 

• If the environment can change itself while an agent is deliberating then such 

environment is called a dynamic environment else it is called a static environment. 

• Static environments are easy to deal because an agent does not need to continue looking 

at the world while deciding for an action. 

• However for dynamic environment, agents need to keep looking at the world at each 

action. 

• Taxi driving is an example of a dynamic environment whereas Crossword puzzles are 

an example of a static environment. 

5. Discrete vs Continuous 

• If in an environment there are a finite number of precepts and actions that can be 

performed within it, then such an environment is called a discrete environment else it 

is called continuous environment. 

• A chess game comes under discrete environment as there is a finite number of moves 

that can be performed. 

• A self-driving car is an example of a continuous environment. 



10 

6. Known vs Unknown 

• Known and unknown are not actually a feature of an environment, but it is an agent's 

state of knowledge to perform an action. 

• In a known environment, the results for all actions are known to the agent. While in 

unknown environment, agent needs to learn how it works in order to perform an action. 

• It is quite possible that a known environment to be partially observable and an Unknown 

environment to be fully observable. 

7. Accessible vs. Inaccessible 

• If an agent can obtain complete and accurate information about the state's environment, 

then such an environment is called an Accessible environment else it is called 

inaccessible. 

• An empty room whose state can be defined by its temperature is an example of an 

accessible environment. 

• Information about an event on earth is an example of Inaccessible environment. 

Task environments, which are essentially the "problems" to which rational agents are 

the "solutions." 

PEAS: Performance Measure, Environment, Actuators, Sensors 

Performance 

The output which we get from the agent. All the necessary results that an agent gives 

after processing comes under its performance. 

Environment 

All the surrounding things and conditions of an agent fall in this section. It basically 

consists of all the things under which the agents work. 

Actuators 

The devices, hardware or software through which the agent performs any actions or 

processes any information to produce a result are the actuators of the agent. 

 

Sensors 

The devices through which the agent observes and perceives its environment are the 

sensors of the agent. 
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Figure 1.5 Examples of agent types and their PEAS descriptions 

 

Rational Agent - A system is rational if it does the “right thing”. Given what it knows. 

Characteristic of Rational Agent 

▪ The agent's prior knowledge of the environment. 

▪ The performance measure that defines the criterion of success. 

▪ The actions that the agent can perform. 

▪ The agent's percept sequence to date. 

For every possible percept sequence, a rational agent should select an action that is 

expected to maximize its performance measure, given the evidence provided by the percept 

sequence and whatever built-in knowledge the agent has. 

• An omniscient agent knows the actual outcome of its actions and can act accordingly; 

but omniscience is impossible in reality. 

• Ideal Rational Agent precepts and does things. It has a greater performance measure. 

Eg. Crossing road. Here first perception occurs on both sides and then only action. No 

perception occurs in Degenerate Agent. 

Eg. Clock. It does not view the surroundings. No matter what happens outside. The 

clock works based on inbuilt program. 

• Ideal Agent describes by ideal mappings. “Specifying which action an agent ought to 

take in response to any given percept sequence provides a design for ideal agent”. 
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• Eg. SQRT function calculation in calculator. 

• Doing actions in order to modify future precepts-sometimes called information 

gathering- is an important part of rationality. 

• A rational agent should be autonomous-it should learn from its own prior knowledge 

(experience). 

The Structure of Intelligent Agents 

Agent = Architecture + Agent Program 

Architecture = the machinery that an agent executes on. (Hardware) 

Agent Program = an implementation of an agent function. (Algorithm,  

Logic – Software) 

1.8 TYPES OF AGENTS 

Agents can be grouped into four classes based on their degree of perceived intelligence 

and capability : 

• Simple Reflex Agents 

• Model-Based Reflex Agents 

• Goal-Based Agents 

• Utility-Based Agents 

• Learning Agent 

The Simple reflex agents 

• The Simple reflex agents are the simplest agents. These agents take decisions on the 

basis of the current percepts and ignore the rest of the percept history (past State). 

• These agents only succeed in the fully observable environment. 

• The Simple reflex agent does not consider any part of percepts history during their 

decision and action process. 

• The Simple reflex agent works on Condition-action rule, which means it maps the 

current state to action. Such as a Room Cleaner agent, it works only if there is dirt in 

the room. 

• Problems for the simple reflex agent design approach: 

o They have very limited intelligence 

o They do not have knowledge of non-perceptual parts of the current state 
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o Mostly too big to generate and to store. 

o Not adaptive to changes in the environment. 

Condition-Action Rule − It is a rule that maps a state (condition) to an action. 

Ex: if car-in-front-is-braking then initiate- braking. 

 

Figure 1.6 A simple reflex agent 

 

Model Based Reflex Agents 

• The Model-based agent can work in a partially observable environment, and track the 

situation. 

• A model-based agent has two important factors: 

o Model: It is knowledge about "how things happen in the world," so it is called a 

Model-based agent. 

o Internal State: It is a representation of the current state based on percept history. 

• These agents have the model, "which is knowledge of the world" and based on the 

model they perform actions. 

• Updating the agent state requires information about: 

o How the world evolves 

o How the agent's action affects the world. 
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Figure 1.7 A model-based reflex agent 

 

Goal Based Agents 

o The knowledge of the current state environment is not always sufficient to decide for 

an agent to what to do. 

o The agent needs to know its goal which describes desirable situations. 

o Goal-based agents expand the capabilities of the model-based agent by having the 

"goal" information. 

o They choose an action, so that they can achieve the goal. 

o These agents may have to consider a long sequence of possible actions before deciding 

whether the goal is achieved or not. Such considerations of different scenario are called 

searching and planning, which makes an agent proactive. 

 

Figure 1.8 A goal-based agent 
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Utility Based Agents 

o These agents are similar to the goal-based agent but provide an extra component of 

utility measurement (“Level of Happiness”) which makes them different by providing 

a measure of success at a given state. 

o Utility-based agent act based not only goals but also the best way to achieve the goal. 

o The Utility-based agent is useful when there are multiple possible alternatives, and an 

agent has to choose in order to perform the best action. 

o The utility function maps each state to a real number to check how efficiently each 

action achieves the goals. 

 

Figure 1.9 A utility-based agent 

Learning Agents 

o A learning agent in AI is the type of agent which can learn from its past experiences, or 

it has learning capabilities. 

o It starts to act with basic knowledge and then able to act and adapt automatically 

through learning. 

o A learning agent has mainly four conceptual components, which are: 

a. Learning element: It is responsible for making improvements by learning from 

environment 

b. Critic: Learning element takes feedback from critic which describes that how well 

the agent is doing with respect to a fixed performance standard. 

c. Performance element: It is responsible for selecting external action 
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d. Problem generator: This component is responsible for suggesting actions that will 

lead to new and informative experiences. 

o Hence, learning agents are able to learn, analyze performance, and look for new ways 

to improve the performance. 

 

Figure 1.10 Learning Agents 

 

1.9 PROBLEM SOLVING APPROACH TO TYPICAL AI PROBLEMS 

Problem-solving agents 

In Artificial Intelligence, Search techniques are universal problem-solving methods. 

Rational agents or Problem-solving agents in AI mostly used these search strategies or 

algorithms to solve a specific problem and provide the best result. Problem- solving agents are 

the goal-based agents and use atomic representation. In this topic, wewill learn various 

problem-solving search algorithms. 

• Some of the most popularly used problem solving with the help of artificial intelligence 

are: 

1. Chess. 

2. Travelling Salesman Problem. 

3. Tower of Hanoi Problem. 

4. Water-Jug Problem. 

5. N-Queen Problem. 

Problem Searching 

• In general, searching refers to as finding information one needs. 
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• Searching is the most commonly used technique of problem solving in artificial 

intelligence. 

• The searching algorithm helps us to search for solution of particular problem. 

Problem: Problems are the issues which comes across any system. A solution is needed to 

solve that particular problem. 

Steps : Solve Problem Using Artificial Intelligence 

• The process of solving a problem consists of five steps. These are: 

 

Figure 1.11 Problem Solving in Artificial Intelligence 

 

Defining The Problem: The definition of the problem must be included precisely. It 

should contain the possible initial as well as final situations which should result in acceptable 

solution. 

1. Analyzing The Problem: Analyzing the problem and its requirement must be done as 

few features can have immense impact on the resulting solution. 

2. Identification Of Solutions: This phase generates reasonable amount of solutions to 

the given problem in a particular range. 

3. Choosing a Solution: From all the identified solutions, the best solution is chosen basis 

on the results produced by respective solutions. 

4. Implementation: After choosing the best solution, its implementation is done. 

Measuring problem-solving performance 

We can evaluate an algorithm’s performance in four ways: 
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Completeness: Is the algorithm guaranteed to find a solution when there is one? 

Optimality: Does the strategy find the optimal solution? 

Time complexity: How long does it take to find a solution? 

Space complexity: How much memory is needed to perform the search? 

Search Algorithm Terminologies 

• Search: Searching is a step by step procedure to solve a search-problem in a given 

search space. A search problem can have three main factors: 

1. Search Space: Search space represents a set of possible solutions, which a system 

may have. 

2. Start State: It is a state from where agent begins the search. 

3. Goal test: It is a function which observe the current state and returns whether the 

goal state is achieved or not. 

• Search tree: A tree representation of search problem is called Search tree. The root of 

the search tree is the root node which is corresponding to the initial state. 

• Actions: It gives the description of all the available actions to the agent. 

• Transition model: A description of what each action do, can be represented as a 

transition model. 

• Path Cost: It is a function which assigns a numeric cost to each path. 

• Solution: It is an action sequence which leads from the start node to the goal node. 

Optimal Solution: If a solution has the lowest cost among all solutions. 

Example Problems 

A Toy Problem is intended to illustrate or exercise various problem-solving methods. 

Areal- world problem is one whose solutions people actually care about. 

Toy Problems 

Vacuum World 

States: The state is determined by both the agent location and the dirt locations. The 

agent is in one of the 2 locations, each of which might or might not contain dirt. Thus there are 

2*2^2=8 possible world states. 

Initial state: Any state can be designated as the initial state. 
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Actions: In this simple environment, each state has just three actions: Left, Right, and 

Suck. Larger environments might also include Up and Down. 

Transition model: The actions have their expected effects, except that moving Left in 

the leftmost squ are, moving Right in the rightmost square, and Sucking in a clean square have 

no effect. The complete state space is shown in Figure. 

Goal test: This checks whether all the squares are clean. 

Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

 

Figure 1.12 Vacuum World State Space Graph 

 

1) 8- Puzzle Problem 

 

Figure 1.13  8- Puzzle Problem 

 

States: A state description specifies the location of each of the eight tiles and the blank 

in one of the nine squares. 
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Initial state: Any state can be designated as the initial state. Note that any given goal 

can be reached from exactly half of the possible initial states. 

The simplest formulation defines the actions as movements of the blank space Left, 

Right, Up, or Down. Different subsets of these are possible depending on where the blank is. 

Transition model: Given a state and action, this returns the resulting state; for example, 

if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank 

switched. 

Goal test: This checks whether the state matches the goal configuration shown in 

Figure. Path cost: Each step costs 1, so the path cost is the number of steps in the path. 

Queens Problem 

 

Figure 1.14 Queens Problem 

 

• States: Any arrangement of 0 to 8 queens on the board is a state. 

• Initial state: No queens on the board. 

• Actions: Add a queen to any empty square. 

• Transition model: Returns the board with a queen added to the specified square. 

• Goal test: 8 queens are on the board, none attacked. 

Consider the given problem. Describe the operator involved in it. Consider the water 

jug problem: You are given two jugs, a 4-gallon one and 3-gallon one. Neither has any 

measuring marker on it. There is a pump that can be used to fill the jugs with water. How can 

you get exactly 2 gallon of water from the 4-gallon jug ? 

Explicit Assumptions: A jug can be filled from the pump, water can be poured out of a 

jug on to the ground, water can be poured from one jug to another and that there are no other 

measuring devices available. 

Here the initial state is (0, 0). The goal state is (2, n) for any value of n. 
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State Space Representation: we will represent a state of the problem as a tuple (x, y) 

where x represents the amount of water in the 4-gallon jug and y represents the amount of water 

in the 3-gallon jug. Note that 0 ≤ x ≤ 4, and 0 ≤ y ≤ 3. 

To solve this we have to make some assumptions not mentioned in the problem. They 

are: 

• We can fill a jug from the pump. 

• We can pour water out of a jug to the ground. 

• We can pour water from one jug to another. 

• There is no measuring device available. 

Operators - we must define a set of operators that will take us from one state to another. 

Table 1.1 

Sr. Current State Next State Descriptions 

1 (x,y) if x < 4 (4,y) Fill the 4 gallon jug 

2 (x,y) if x < 3 (x,3) Fill the 3 gallon jug 

3 (x,y) if x > 0  (x – d, y) Pour some water out of the 4 gallon jug 

4 (x,y) if y > 0  (x, y – d) Pour some water out of the 3 gallon jug 

5 (x,y) if y > 0  (0, y) Empty the 4 gallon jug 

6 (x,y) if y > 0  (x 0) Empty the 3 gallon jug on the ground 

7 
(x,y) if x + y > = 4 

and y > 0 
(4, y – (4 – x)) 

Pour water from the 3 gallon jug into the 

4 gallon jug until the 4 gallon jug is full 

8 
(x,y) if x + y > = 3 

and x > 0 
(x – (3 – x), 3) 

Pour water from the 4 gallon jug into the 

3 gallon jug until the 3 gallon jug is full 

9 
(x,y) if x + y < = 4 

and y > 0 
(x + y, 0) 

Pour all the water from the 3 gallon jug 

into the 4 gallon jug  

10 
(x,y) if x + y < = 3 

and x > 0 
(0, x + y) 

Pour all the water from the 4 gallon jug 

into the 3 gallon jug  

11 (0, 2) (2, 0) 
Pour the 2 gallons from 3 gallon jug into 

the 4 gallon jug 

12 (2, y) (0, y)  
Empty the 2 gallons in the 4 gallon jug 

on the ground 
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Figure 1.15 Solution 

 

Table 1.2 

Solution 

S.No. 
Gallons in 4-gel 

jug(x) 

Gallons in 3-gel 

jug (y) 
Rule Applied 

1. 0 0 Initial state 

2.. 4 0 1. Fill 4 

3 1 3 6. Poor 4 into 3 to fill 

4. 1 0 4. Empty 3 

5. 0 1 8. Poor all of 4 into 3 

6. 4 1 1. Fill 4 

7. 2 3 6. Poor 4 into 3 

 

➢ 4-gallon one and a 3-gallon Jug 

 

➢ No measuring mark on the jug. 

➢ There is a pump to fill the jugs with water. 

➢ How can you get exactly 2 gallon of water into the 4-gallon jug? 
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UNIT 2 

Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local 

Search Algorithms and Optimization Problems - Searching with Partial Observations – 

Constraint Satisfaction Problems – Constraint Propagation - Backtracking Search – Game 

Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games 

2.1 PROBLEM SOLVING BY SEARCH 

An important aspect of intelligence is goal-based problem solving. 

The solution of many problems can be described by finding a sequence of actions that 

lead to a desirable goal. Each action changes the state and the aim is to find the sequence of 

actions and states that lead from the initial (start) state to a final (goal) state. 

A well-defined problem can be described by: 

 Initial state 

• Operator or successor function - for any state x returns s(x), the set of states 

reachable from x with one action 

• State space - all states reachable from initial by any sequence of actions 

• Path - sequence through state space 

• Path cost - function that assigns a cost to a path. Cost of a path is the sum of costs 

of individual actions along the path 

• Goal test - test to determine if at goal state 

What is Search? 

Search is the systematic examination of states to find path from the start/root state to 

the goal state. 

The set of possible states, together with operators defining their connectivity constitute 

the search space. 

The output of a search algorithm is a solution, that is, a path from the initial state to a 

state that satisfies the goal test. 

Problem-solving agents 

A Problem solving agent is a goal-based agent. It decide what to do by finding sequence 

of actions that lead to desirable states. The agent can adopt a goal and aim at satisfying it. 

To illustrate the agent’s behavior, let us take an example where our agent is in the city 

of Arad, which is in Romania. The agent has to adopt a goal of getting to Bucharest. 
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Goal formulation, based on the current situation and the agent’s performance measure, 

is the first step in problem solving. 

The agent’s task is to find out which sequence of actions will get to a goal state. 

Problem formulation is the process of deciding what actions and states to consider 

given a goal. 

Example: Route finding problem 

Referring to figure  

On holiday in Romania : currently in Arad. Flight leaves tomorrow from Bucharest 

Formulate goal: be in Bucharest 

Formulate problem: states: various cities 

actions: drive between cities 

Find solution: 

sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest 

Problem formulation 

A problem is defined by four items: 

initial state e.g., “at Arad" 

successor function S(x) = set of action-state pairs e.g., S(Arad) = {[Arad -

>Zerind;Zerind],….} goal test, can be 

explicit, e.g., x = at Bucharest" implicit, e.g., NoDirt(x) 

path cost (additive) 

e.g., sum of distances, number of actions executed, etc. c(x; a; y) is the step cost, 

assumed to be >= 0 

A solution is a sequence of actions leading from the initial state to a goal state. 

 Goal formulation and problem formulation 
 

2.2 EXAMPLE PROBLEMS 

The problem solving approach has been applied to a vast array of task environments. 

Some best known problems are summarized below. They are distinguished as toy or real-world 

problems 

A toy problem is intended to illustrate various problem solving methods. It can be 

easily used by different researchers to compare the performance of algorithms. 

A real world problem is one whose solutions people actually care about. 
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2.3 TOY PROBLEMS 

Vacuum World Example 

o States: The agent is in one of two locations, each of which might or might not contain 

dirt. Thus there are 2 x 22 = 8 possible world states. 

o Initial state: Any state can be designated as initial state. 

o Successor function: This generates the legal states that results from trying the three 

actions (left, right, suck). The complete state space is shown in figure  

o Goal Test: This tests whether all the squares are clean. 

o Path test: Each step costs one, so that the path cost is the number of steps in the path. 

Vacuum World State Space 

 

Figure 2.1 The state space for the vacuum world. 

Arcs denote actions: L = Left, R = Right 

 

The 8-puzzle 

An 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank space. A tile 

adjacent to the balank space can slide into the space. The object is to reach the goal state, as 

shown in Figure 2.4  

Example: The 8-puzzle 
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Figure 2.2 A typical instance of 8-puzzle 

 

The problem formulation is as follows: 

o States : A state description specifies the location of each of the eight tiles and the blank 

in one of the nine squares. 

o Initial state : Any state can be designated as the initial state. It can be noted that any 

given goal can be reached from exactly half of the possible initial states. 

o Successor function : This generates the legal states that result from trying the four 

actions(blank moves Left, Right, Up or down). 

o Goal Test : This checks whether the state matches the goal configuration shown in 

Figure(Other goal configurations are possible) 

o Path cost : Each step costs 1,so the path cost is the number of steps in the path. 

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as 

test problems for new search algorithms in AI. This general class is known as NP-complete. 

The 8-puzzle has 9!/2 = 181,440 reachable states and is easily solved. 

The 15 puzzle ( 4 x 4 board ) has around 1.3 trillion states, an the random instances can 

be solved optimally in few milli seconds by the best search algorithms. 

The 24-puzzle (on a 5 x 5 board) has around 1025 states and random instances are still 

quite difficult to solve optimally with current machines and algorithms. 

8-Queens problem 

The goal of 8-queens problem is to place 8 queens on the chessboard such that no queen 

attacks any other.(A queen attacks any piece in the same row, column or diagonal). 

Figure 2.3 shows an attempted solution that fails: the queen in the right most column is 

attacked by the queen at the top left. 

An Incremental formulation involves operators that augments the state description, 

starting with an empty state. For 8-queens problem, this means each action adds a queen to the 

state. A complete-state formulation starts with all 8 queens on the board and move them 

around. In either case the path cost is of no interest because only the final state counts. 
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Figure 2.3 8-queens problem 

 

The first incremental formulation one might try is the following: 

o States: Any arrangement of 0 to 8 queens on board is a state. 

o Initial state: No queen on the board. 

o Successor function: Add a queen to any empty square. 

o Goal Test: 8 queens are on the board, none attacked. 

In this formulation, we have 64.63…57 = 3 x 1014 possible sequences to investigate. 

A better formulation would prohibit placing a queen in any square that is already 

attacked. 

o States : Arrangements of n queens ( 0 <= n < = 8 ),one per column in the left most 

columns, with no queen attacking another are states. 

o Successor function : Add a queen to any square in the left most empty column such 

that it is not attacked by any other queen. 

This formulation reduces the 8-queen state space from 3 x 1014 to just 2057,and solutions 

are easy to find. 

For the 100 queens the initial formulation has roughly 10400 states whereas the improved 

formulation has about 1052 states. This is a huge reduction, but the improved state space is still 

too big for the algorithms to handle. 

2.4 REAL-WORLD PROBLEMS 

ROUTE-FINDING PROBLEM 

Route-finding problem is defined in terms of specified locations and transitions along 

links between them. Route-finding algorithms are used in a variety of applications, such as 

routing in computer networks, military operations planning, and airline travel planning 

systems. 
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2.5 AIRLINE TRAVEL PROBLEM 

The airline travel problem is specifies as follows: 

o States: Each is represented by a location (e.g., an airport) and the current time. 

o Initial state: This is specified by the problem. 

o Successor function: This returns the states resulting from taking any scheduled flight 

(further specified by seat class and location),leaving later than the current time plus the 

within-airport transit time, from the current airport to another. 

o Goal Test: Are we at the destination by some prespecified time? 

o Path cost: This depends upon the monetary cost, waiting time, flight time, customs and 

immigration procedures, seat quality, time of date, type of air plane, frequent-flyer 

mileage awards, and so on. 

2.6 TOURING PROBLEMS 

Touring problems are closely related to route-finding problems, but with an important 

difference. Consider for example, the problem, “Visit every city at least once” as shown in 

Romania map. 

As with route-finding the actions correspond to trips between adjacent cities. The state 

space, however, is quite different. 

The initial state would be “In Bucharest; visited{Bucharest}”. 

A typical intermediate state would be “In Vaslui;visited {Bucharest, Urziceni,Vaslui}”. 

The goal test would check whether the agent is in Bucharest and all 20 cities have been 

visited. 

2.7 THE TRAVELLING SALESPERSON PROBLEM(TSP) 

Is a touring problem in which each city must be visited exactly once. The aim is to find 

the shortest tour. The problem is known to be NP-hard. Enormous efforts have been expended 

to improve the capabilities of TSP algorithms. These algorithms are also used in tasks such as 

planning movements of automatic circuit-board drills and of stocking machines on shop 

floors. 

VLSI layout 

A VLSI layout problem requires positioning millions of components and connections 

on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize 

manufacturing yield. The layout problem is split into two parts: cell layout and channel 

routing. 
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ROBOT navigation 

ROBOT navigation is a generalization of the route-finding problem. Rather than a 

discrete set of routes, a robot can move in a continuous space with an infinite set of possible 

actions and states. For a circular Robot moving on a flat surface, the space is essentially two-

dimensional. When the robot has arms and legs or wheels that also must be controlled, the 

search space becomes multi-dimensional. Advanced techniques are required to make the search 

space finite. 

2.8 AUTOMATIC ASSEMBLY SEQUENCING 

The example includes assembly of intricate objects such as electric motors. The aim in 

assembly problems is to find the order in which to assemble the parts of some objects. If the 

wrong order is choosen, there will be no way to add some part later without undoing some 

work already done. Another important assembly problem is protein design, in which the goal 

is to find a sequence of Amino acids that will be fold into a three-dimensional protein with the 

right properties to cure some disease. 

2.9 INTERNET SEARCHING 

In recent years there has been increased demand for software robots that perform 

Internet searching, looking for answers to questions, for related information, or for shopping 

deals. The searching techniques consider internet as a graph of nodes(pages) connected by 

links. 

Different Search Algorithm 

 

Figure 2.4 Different Search Algorithms 
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2.10 UNINFORMED SEARCH STRATGES 

Uninformed Search Strategies have no additional information about states beyond 

that provided in the problem definition. 

Strategies that know whether one non goal state is “more promising” than another are 

called 

Informed search or heuristic search strategies. 

There are five uninformed search strategies as given below. 

o Breadth-first search 

o Uniform-cost search 

o Depth-first search 

o Depth-limited search 

o Iterative deepening search 

Breadth-first search 

o Breadth-first search is a simple strategy in which the root node is expanded first, then 

all successors of the root node are expanded next, then their successors, and so on. In 

general, all the nodes are expanded at a given depth in the search tree before any nodes 

at the next level are expanded. 

o Breath-first-search is implemented by calling TREE-SEARCH with an empty fringe 

that is a first-in-first-out (FIFO) queue, assuring that the nodes that are visited first will 

be expanded first. In otherwards, calling TREE-SEARCH (problem, FIFO-QUEUE()) 

results in breadth-first-search. The FIFO queue puts all newly generated successors at 

the end of the queue, which means that Shallow nodes are expanded before deeper 

nodes. 

 

    

 

Figure 2.5 Breadth-first search on a simple binary tree. At each stage, the node to be 

expanded next is indicated by a marker. 
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Properties of breadth-first-search 

 

Figure 2.6 Breadth-first-search properties 
 

Time complexity for BFS 

Assume every state has b successors. The root of the search tree generates b nodes at 

the first level, each of which generates b more nodes, for a total of b2 at the second level. Each 

of these generates b more nodes, yielding b3 nodes at the third level, and so on. Now suppose, 

that the solution is at depth d. In the worst case, we would expand all but the last node at level 

d, generating bd+1 - b nodes at level d+1. 

Then the total number of nodes generated is b + b2 + b3 + …+ bd + ( bd+1 + b) = O(bd+1). 

Every node that is generated must remain in memory, because it is either part of the 

fringe or is an ancestor of a fringe node. The space compleity is, therefore, the same as the time 

complexity 

2.11 UNIFORM-COST SEARCH 

Instead of expanding the shallowest node, uniform-cost search expands the node n 

with the lowest path cost. Uniform-cost search does not care about the number of steps a path 

has, but only about their total cost. 
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2.12 DEPTH-FIRST-SEARCH 

Depth-first-search always expands the deepest node in the current fringe of the search 

tree. The progress of the search is illustrated in Figure 1.31. The search proceeds immediately 

to the deepest level of the search tree, where the nodes have no successors. As those nodes are 

expanded, they are dropped from the fringe, so then the search “backs up” to the next shallowest 

node that still has unexplored successors. 

   

   

   

   

Figure 2.7 Depth-first-search on a binary tree. Nodes that have been expanded and have 

node scendants in the fringe can be removed from the memory; these are shown in 

black. Nodes at depth 3 are assumed to have no successors and M is the only goal node. 

 

This strategy can be implemented by TREE-SEARCH with a last-in-first-out (LIFO) 

queue, also known as a stack. 

Depth-first-search has very modest memory requirements. It needs to store only a single 

path from the root to a leaf node, along with the remaining unexpanded sibling nodes for each 

node on the path. Once the node has been expanded, it can be removed from the memory, as 

soon as its descendants have been fully explored (Refer Figure 2.7). 

For a state space with a branching factor b and maximum depth m, depth-first-search 

requires storage of only bm + 1 nodes. 

Using the same assumptions as Figure, and assuming that nodes at the same depth as 

the goal node have no successors, we find the depth-first-search would require 118 kilobytes 

instead of 10 petabytes, a factor of 10 billion times less space. 
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Drawback of Depth-first-search 

The drawback of depth-first-search is that it can make a wrong choice and get stuck 

going down very long(or even infinite) path when a different choice would lead to solution 

near the root of the search tree. For example, depth-first-search will explore the entire left 

subtree even if node C is a goal node. 

2.12 BACKTRACKING SEARCH 

A variant of depth-first search called backtracking search uses less memory and only 

one successor is generated at a time rather than all successors.; Only O(m) memory is needed 

rather than O(bm) 

DEPTH-LIMITED-SEARCH 

 

 

Figure 2.8 Depth-limited-search 

 

The problem of unbounded trees can be alleviated by supplying depth-first-search with 

a pre- determined depth limit l. That is, nodes at depth l are treated as if they have no successors. 

This approach is called depth-limited-search. The depth limit soves the infinite path problem. 

Depth limited search will be nonoptimal if we choose l > d. Its time complexity is O(bl) 

and its space complete is O(bl). Depth-first-search can be viewed as a special case of depth-

limited search with l = oo Sometimes, depth limits can be based on knowledge of the problem. 

For, example, on the map of Romania there are 20 cities. Therefore, we know that if there is a 

solution, it must be of length 19 at the longest, So l = 10 is a possible choice. However, it can 

be shown that any city can be reached from any other city in at most 9 steps. This number 

known as the diameter of the state space, gives us a better depth limit. 
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Depth-limited-search can be implemented as a simple modification to the general tree-

search algorithm or to the recursive depth-first-search algorithm. The pseudocode for recursive 

depth- limited-search is shown in Figure. 

It can be noted that the above algorithm can terminate with two kinds of failure : the 

standard failure value indicates no solution; the cutoffvalue indicates no solution within the 

depth limit. Depth-limited search = depth-first search with depth limit l,returns cut off if any 

path is cut off by depth limit 

function Depth-Limited-Search( problem, limit) returns a solution/fail/cutoff return 

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit) function Recursive-

DLS(node, problem, limit) returns solution/fail/cutoff cutoff-occurred? false 

if Goal-Test(problem,State[node]) then return Solution(node) 

else if Depth[node] = limit then return cutoff 

else for each successor in Expand(node, problem) do result      

Recursive-DLS(successor, problem, limit)  if result = cutoff then cutoff_occurred?true 

else if result not = failure then return result 

ifcutoff_occurred? then return cutoff else return failure 

Figure 2.9 Recursive implementation of Depth-limited-search 

 

2.13 ITERATIVE DEEPENING DEPTH-FIRST SEARCH 

Iterative deepening search (or iterative-deepening-depth-first-search) is a general 

strategy often used in combination with depth-first-search, that finds the better depth limit. It 

does this by gradually increasing the limit – first 0,then 1,then 2, and so on – until a goal is 

found. This will occur when the depth limit reaches d, the depth of the shallowest goal node. 

The algorithm is shown in Figure. 

Iterative deepening combines the benefits of depth-first and breadth-first-search Like 

depth-first-search, its memory requirements are modest; O(bd) to be precise. 

Like Breadth-first-search, it is complete when the branching factor is finite and optimal 

when the path cost is a non decreasing function of the depth of the node. 

Figure shows the four iterations of ITERATIVE-DEEPENING_SEARCH on a binary 

search tree, where the solution is found on the fourth iteration. 
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Figure 2.10 The iterative deepening search algorithm, which repeatedly applies 

depth-limited- search with increasing limits. It terminates when a solution is found or 

if the depth limited search returns failure, meaning that no solution exists. 

 

 

Figure 2.11 Four iterations of iterative deepening search on a binary tree 

 

Iterative search is not as wasteful as it might seem 
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Figure 2.12 Iterative search is not as wasteful as it might seem 

Properties of iterative deepening search 

 

Figure 2.13 Properties of iterative deepening search 
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Bidirectional Search 

The idea behind bidirectional search is to run two simultaneous searches – one forward 

from the initial state and the other backward from the goal, stopping when the two searches 

meet in the middle  

The motivation is that bd/2 + bd/2 much less than, or in the figure, the area of the two 

small circles is less than the area of one big circle centered on the start and reaching to the goal.  

 

Figure 2.14 A schematic view of a bidirectional search that is about to succeed, when 

a Branch from the Start node meets a Branch from the goal node. 

 

• Before moving into bidirectional search let’s first understand a few terms. 

• Forward Search: Looking in-front of the end from start. 

• Backward Search: Looking from end to the start back-wards. 

• So Bidirectional Search as the name suggests is a combination of forwarding and 

backward search. Basically, if the average branching factor going out of node / fan-out, 

if fan-out is less, prefer forward search. Else if the average branching factor is going 

into a node/fan in is less (i.e. fan-out is more), prefer backward search.  

• We must traverse the tree from the start node and the goal node and wherever they meet 

the path from the start node to the goal through the intersection is the optimal solution. 

The BS Algorithm is applicable when generating predecessors is easy in both forward 

and backward directions and there exist only 1 or fewer goal states. 
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Figure 2.15 Comparing Uninformed Search Strategies 

 

 

Figure 2.16 Evaluation of search strategies, b is the branching factor; d is the depth of 

the shallowest solution; m is the maximum depth of the search tree; l is the depth 

limit. Superscript caveats are as follows: a complete if b is finite; b complete if step 

costs >= E for positive E; c optimal if step costs are all identical; d if both directions 

use breadth-first search. 

 

2.14 SEARCHING WITH PARTIAL INFORMATION 

o Different types of incompleteness lead to three distinct problem types: 

o Sensorless problems (conformant): If the agent has no sensors at all 

o Contingency problem: if the environment if partially observable or if action are 

uncertain (adversarial) 

o Exploration problems: When the states and actions of the environment are unknown. 
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o No sensor 

o Initial State(1,2,3,4,5,6,7,8) 

o After action [Right] the state (2,4,6,8) 

o After action [Suck] the state (4, 8) 

o After action [Left] the state (3,7) 

o After action [Suck] the state (8) 

o Answer : [Right, Suck, Left, Suck] coerce the world into state 7 without any sensor 

o Belief State: Such state that agent belief to be there 

Partial knowledge of states and actions: 

– sensorless or conformant problem 

– Agent may have no idea where it is; solution (if any) is a sequence. 

– contingency problem 

– Percepts provide new information about current state; solution is a tree or policy; 

often interleave search and execution. 

– If uncertainty is caused by actions of another agent: adversarial problem 

– exploration problem 

– When states and actions of the environment are unknown. 

 

Figure 2.17 states and actions of the 

environment are unknown 
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Figure 2.18 states and actions 

 

Contingency, start in {1,3}. 

Murphy’s law, Suck can dirty a clean carpet. Local sensing: dirt, location only. 

– Percept = [L,Dirty] ={1,3} 

– [Suck] = {5,7} 

– [Right] ={6,8} 

– [Suck] in {6}={8} (Success) 

– BUT [Suck] in {8} = failure Solution?? 

– Belief-state: no fixed action sequence guarantees solution 

Relax requirement: 

– [Suck, Right, if [R,dirty] then Suck] 

– Select actions based on contingencies arising during execution. 

Time and space complexity are always considered with respect to some measure of the 

problem difficulty. In theoretical computer science, the typical measure is the size of the state 

space. 

In AI, where the graph is represented implicitly by the initial state and successor 

function, the complexity is expressed in terms of three quantities: 

b, the branching factor or maximum number of successors of any node; 

d, the depth of the shallowest goal node; and 
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m, the maximum length of any path in the state space. 

Search-cost - typically depends upon the time complexity but can also include the term 

for memory usage. 

Total–cost – It combines the search-cost and the path cost of the solution found. 

2.15 INFORMED SEARCH AND EXPLORATION 

Informed (Heuristic) Search Strategies 

Informed search strategy is one that uses problem-specific knowledge beyond the 

definition of the problem itself. It can find solutions more efficiently than uninformed strategy. 

Best-first search 

Best-first search is an instance of general TREE-SEARCH or GRAPH-SEARCH 

algorithm in which a node is selected for expansion based on an evaluation function f(n). The 

node with lowest evaluation is selected for expansion, because the evaluation measures the 

distance to the goal. 

This can be implemented using a priority-queue, a data structure that will maintain the 

fringe in ascending order of f-values. 

2.16 HEURISTIC FUNCTIONS 

A heuristic function or simply a heuristic is a function that ranks alternatives in 

various search algorithms at each branching step basing on an available information in order 

to make a decision which branch is to be followed during a search. 

The key component of Best-first search algorithm is a heuristic function, denoted by 

h(n): h(n) = estimated cost of the cheapest path from node n to a goal node. 

For example, in Romania, one might estimate the cost of the cheapest path from Arad 

to Bucharest via a straight-line distance from Arad to Bucharest (Figure 2.19). 

Heuristic function are the most common form in which additional knowledge is 

imparted to the search algorithm. 

Greedy Best-first search 

Greedy best-first search tries to expand the node that is closest to the goal, on the 

grounds that this is likely to a solution quickly. 

It evaluates the nodes by using the heuristic function f(n) = h(n). 

Taking the example of Route-finding problems in Romania, the goal is to reach 

Bucharest starting from the city Arad. We need to know the straight-line distances to Bucharest 

from various cities as shown in Figure. For example, the initial state is In(Arad),and the straight 

line distance heuristic hSLD (In(Arad)) is found to be 366. 

Using the straight-line distance heuristic hSLD, the goal state can be reached faster. 



43 

 

Figure  2.19 Values of hSLD - straight line distances to Bucharest 

 

 

 

 

 

 

 

 

Figure 2.20 progress of greedy best-first search 
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Figure shows the progress of greedy best-first search using hSLD to find a path from 

Arad to Bucharest. The first node to be expanded from Arad will be Sibiu, because it is closer 

to Bucharest than either Zerind or Timisoara. The next node to be expanded will be Fagaras, 

because it is closest. Fagaras in turn generates Bucharest, which is the goal. 

Properties of greedy search 

o Complete: No–can get stuck in loops, e.g., Iasi !Neamt !Iasi !Neamt ! 

Complete in finite space with repeated-state checking 

o Time: O(bm), but a good heuristic can give dramatic improvement 

o Space: O(bm) - keeps all nodes in memory 

o Optimal: No 

Greedy best-first search is not optimal, and it is incomplete. 

The worst-case time and space complexity is O(bm),where m is the maximum depth of 

the search space. 

A* SEARCH 

A* Search is the most widely used form of best-first search. The evaluation function 

f(n) is obtained by combining 

(1) g(n) = the cost to reach the node, and 

(2) h(n) = the cost to get from the node to the goal : 

f(n) = g(n) + h(n). 

A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. 

The obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be an 

overestimate. 

A* Search is optimal if h(n) is an admissible heuristic – that is, provided that h(n) never 

overestimates the cost to reach the goal. 

An obvious example of an admissible heuristic is the straight-line distance hSLD that 

we used in getting to Bucharest. The progress of an A* tree search for Bucharest is shown in 

Figure  

The values of ‘g ‘ are computed from the step costs shown in the Romania map(figure). 

Also the values of hSLD are given in Figure  
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Figure 2.21 A* Search 

 

 

Figure 2.22 Example A* Search 

 

2.17 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS 

o In many optimization problems, the path to the goal is irrelevant; the goal state itself is 

the solution 

o For example, in the 8-queens problem, what matters is the final configuration of queens, 

not the order in which they are added. 

o In such cases, we can use local search algorithms. They operate using a single current 

state (rather than multiple paths) and generally move only to neighbors of that state. 
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o The important applications of these class of problems are (a) integrated-circuit design, 

(b) Factory-floor layout, (c) job-shop scheduling, (d) automatic programming, (e) 

telecommunications network optimization, (f) Vehicle routing, and (g) portfolio 

management. 

Key advantages of Local Search Algorithms 

(1) They use very little memory – usually a constant amount; and 

(2) they can often find reasonable solutions in large or infinite(continuous) state spaces for 

which systematic algorithms are unsuitable. 

2.18 OPTIMIZATION PROBLEMS 

In addition to finding goals, local search algorithms are useful for solving pure 

optimization problems, in which the aim is to find the best state according to an objective 

function. 

State Space Landscape 

To understand local search, it is better explained using state space landscape as shown 

in Figure. 

A landscape has both “location” (defined by the state) and “elevation” (defined by the 

value of the heuristic cost function or objective function). 

If elevation corresponds to cost, then the aim is to find the lowest valley – a global 

minimum; if elevation corresponds to an objective function, then the aim is to find the highest 

peak – a global maximum. 

Local search algorithms explore this landscape. A complete local search algorithm 

always finds a goal if one exists; an optimal algorithm always finds a global 

minimum/maximum. 

 

Figure 2.23 A one dimensional state space landscape in which elevation 

corresponds to the objective function. The aim is to find the global maximum. 

Hill climbing search modifies the current state to try to improve it, as shown 

by the arrow. The various topographic features are defined in the text 
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Hill-climbing search 

The hill-climbing search algorithm as shown in figure, is simply a loop that continually 

moves in the direction of increasing value – that is, uphill. It terminates when it reaches a 

“peak” where no neighbor has a higher value. 

function HILL-CLIMBING( problem) return a state that is a local maximum 

input: problem, a problem 

local variables: current, a 

node. 

neighbor, a node. 

 

current ←MAKE-NODE(INITIAL-STATE[problem]) 

loop do 

neighbor ← a highest valued successor of current 

if VALUE [neighbor] ≤ VALUE[current] then return STATE[current] 

current ←neighbor 

Figure 2.24 The hill-climbing search algorithm (steepest ascent version), which is 

the most basic local search technique. At each step the current node is replaced 

by the best neighbor; the neighbor with the highest VALUE. If the heuristic cost 

estimate h is used, we could find the neighbor with the lowest h. 

 

Hill-climbing is sometimes called greedy local search because it grabs a good neighbor 

state without thinking ahead about where to go next. Greedy algorithms often perform quite 

well. Problems with hill-climbing 

Hill-climbing often gets stuck for the following reasons : 

• Local maxima: a local maximum is a peak that is higher than each of its neighboring 

states, but lower than the global maximum. Hill-climbing algorithms that reach the 

vicinity of a local maximum will be drawn upwards towards the peak, but will then be 

stuck with nowhere else to go 

• Ridges: A ridge is shown in Figure 2.10. Ridges results in a sequence of local maxima 

that is very difficult for greedy algorithms to navigate. 

• Plateaux: A plateau is an area of the state space landscape where the evaluation 

function is flat. It can be a flat local maximum, from which no uphill exit exists, or a 

shoulder, from which it is possible to make progress. 
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Figure 2.25 Illustration of why ridges cause difficulties for hill-climbing. The grid 

of states(dark circles) is superimposed on a ridge rising from left to right, creating 

a sequence of local maxima that are not directly connected to each other. From 

each local maximum, all the available options point downhill. 

 

Hill-climbing variations 

➢ Stochastic hill-climbing 

o Random selection among the uphill moves. 

o The selection probability can vary with the steepness of the uphill move. 

➢ First-choice hill-climbing 

o cfr. stochastic hill climbing by generating successors randomly until a better 

one is found. 

➢ Random-restart hill-climbing 

o Tries to avoid getting stuck in local maxima. 

Simulated annealing search 

A hill-climbing algorithm that never makes “downhill” moves towards states with 

lower value (or higher cost) is guaranteed to be incomplete, because it can stuck on a local 

maximum. In contrast, a purely random walk –that is, moving to a successor choosen uniformly 

at random from the set of successors – is complete, but extremely inefficient. 

Simulated annealing is an algorithm that combines hill-climbing with a random walk 

in someway that yields both efficiency and completeness. 

Figure shows simulated annealing algorithm. It is quite similar to hill climbing. Instead 

of picking the best move, however, it picks the random move. If the move improves the 

situation, it is always accepted. Otherwise, the algorithm accepts the move with some 

probability less than 1. The probability decreases exponentially with the “badness” of the move 

– the amount E by which the evaluation is worsened. 
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Simulated annealing was first used extensively to solve VLSI layout problems in the early 

1980s. It has been applied widely to factory scheduling and other large-scale optimization 

tasks. 

 

Figure 2.26 The simulated annealing search algorithm, a version of stochastic 

hill climbing where some downhill moves are allowed. 

 

Genetic algorithms 

A Genetic algorithm (or GA) is a variant of stochastic beam search in which successor 

states are generated by combining two parent states, rather than by modifying a single state 

Like beam search, Gas begin with a set of k randomly generated states, called the 

population. Each state, or individual, is represented as a string over a finite alphabet – most 

commonly, a string of 0s and 1s. For example, an 8 8-quuens state must specify the positions 

of 8 queens, each in a column of 8 squares, and so requires 8 x log2 8 = 24 bits. 

 

Figure 2.27 Genetic algorithm 
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Figure shows a population of four 8-digit strings representing 8-queen states. The 

production of the next generation of states is shown in Figure  

In (b) each state is rated by the evaluation function or the fitness function. 

In (c),a random choice of two pairs is selected for reproduction, in accordance with the 

probabilities in (b). 

Figure describes the algorithm that implements all these steps. 

function GENETIC_ALGORITHM( population, FITNESS-FN) return an individual 

input: population, a set of individuals 

FITNESS-FN, a function which determines the quality of the individual 

repeat 

new_population←empty set 

loop for ifrom 1 to SIZE(population) do 

x ←RANDOM_SELECTION(population, FITNESS_FN) 

y ←RANDOM_SELECTION(population, 

FITNESS_FN) 

child ←REPRODUCE(x,y) 

if (small random probability) then child  

MUTATE(child ) add child to new_population 

population ←new_population 

until some individual is fit enough or enough time has elapsed 

return the best individual 

Figure 2.28 A genetic algorithm. 

 

2.29 CONSTRAINT SATISFACTION PROBLEMS(CSP) 

A Constraint Satisfaction Problem(or CSP) is defined by a set of 

variables,X1,X2,….Xn, and a set of constraints C1,C2,…,Cm. Each variable Xi has a 

nonempty domain D,of possible values. 

Each constraint Ci involves some subset of variables and specifies the allowable 

combinations of values for that subset. 

A State of the problem is defined by an assignment of values to some or all of the 

variables,{Xi = vi,Xj = vj,…}. An assignment that does not violate any constraints is called a 

consistent or legal assignment. A complete assignment is one in which every variable is 

mentioned, and a solution to a CSP is a complete assignment that satisfies all the constraints. 

Some CSPs also require a solution that maximizes an objective function.  
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Example for Constraint Satisfaction Problem 

Figure shows the map of Australia showing each of its states and territories. We are 

given the task of coloring each region either red, green, or blue in such a way that the 

neighboring regions have the same color. To formulate this as CSP, we define the variable to 

be the regions 

:WA,NT,Q,NSW,V,SA, and T. The domain of each variable is the set 

{red,green,blue}.The constraints require neighboring regions to have distinct colors; for 

example, the allowable combinations for WA and NT are the pairs 

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. 

The constraint can also be represented more succinctly as the inequality WA not = NT, 

provided the constraint satisfaction algorithm has some way to evaluate such expressions.) 

There are many possible solutions such as 

{ WA = red, NT = green, Q = red, NSW = green, V = red,SA = blue,T = red}. 

It is helpful to visualize a CSP as a constraint graph, as shown in Figure 2.29. The nodes 

of the graph corresponds to variables of the problem and the arcs correspond to constraints. 

 

Figure 2.29 Principle states and territories of Australia. Coloring this map can be 

viewed as a constraint satisfaction problem. The goal is to assign colors to each region 

so that no neighboring regions have the same color. 

 

 



52 

 

 

Figure 2.30 Mapping Problem 

 

CSP can be viewed as a standard search problem as follows: 

➢ Initial state: the empty assignment {},in which all variables are unassigned. 

➢ Successor function: a value can be assigned to any unassigned variable, provided that 

it does not conflict with previously assigned variables. 

➢ Goal test: the current assignment is complete. 

➢ Path cost: a constant cost(E.g.,1) for every step. 

Every solution must be a complete assignment and therefore appears at depth n if there 

are n variables. 

Depth first search algorithms are popular for CSPs 

Varieties of CSPs 

(i) Discrete variables Finite domains 

The simplest kind of CSP involves variables that are discrete and have finite domains. 

Map coloring problems are of this kind. The 8-queens problem can also be viewed as finite-

domain 

CSP, where the variables Q1,Q2,…..Q8 are the positions each queen in columns 1,….8 

and each variable has the domain {1,2,3,4,5,6,7,8}. If the maximum domain size of any 
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variable in a CSP is d, then the number of possible complete assignments is O(dn) – that is, 

exponential in the number of variables. Finite domain CSPs include Boolean CSPs, whose 

variables can be either true or false. Infinite domains 

Discrete variables can also have infinite domains – for example, the set of integers or 

the set of strings. With infinite domains, it is no longer possible to describe constraints by 

enumerating all allowed combination of values. Instead a constraint language of algebric 

inequalities such as Startjob1 + 5 <= Startjob3. 

(ii) CSPs with continuous domains 

CSPs with continuous domains are very common in real world. For example in 

operation research field, the scheduling of experiments on the Hubble Telescope requires very 

precise timing of observations; the start and finish of each observation and manoeuvre are 

continuous-valued variables that must obey a variety of astronomical, precedence and power 

constraints. The best known category of continuous-domain CSPs is that of linear 

programming problems, where the constraints must be linear inequalities forming a convex 

region. Linear programming problems can be solved in time polynomial in the number of 

variables. 

Varieties of constraints 

(i) unary constraints involve a single variable. 

Example : SA # green 

(ii) Binary constraints involve paris of variables. 

Example : SA # WA 

(iii) Higher order constraints involve 3 or more variables. Example :cryptarithmetic puzzles. 

S  

Figure 2.31 cryptarithmetic puzzles. 
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Figure 2.32 Cryptarithmetic puzzles-Solution 

 

 

Figure 2.33 Numerical Solution 

 

Backtracking Search for CSPs 

The term backtracking search is used for depth-first search that chooses values for 

one variable at a time and backtracks when a variable has no legal values left to assign. The 

algorithm is shown in figure  
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Figure 2.34 A simple backtracking algorithm for constraint satisfaction problem. The 

algorithm is modeled on the recursive depth-first search 

 

 

Figure 2.34 Part of the search tree generated by simple backtracking for the map-

coloring problem 

 

 

Figure 2.35 Part of search tree generated by simple backtracking for the map 

coloring problem. 
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Forward checking 

One way to make better use of constraints during search is called forward checking. 

Whenever a variable X is assigned, the forward checking process looks at each unassigned 

variable Y that is connected to X by a constraint and deletes from Y ’s domain any value that 

is inconsistent with the value chosen for X. Figure 5.6 shows the progress of a map-coloring 

search with forward checking. 

 

Figure 2.36 The progress of a map-coloring search with forward checking. WA = red 

is assigned first; then forward checking deletes red from the domains of the 

neighboring variables NT and SA. After Q = green, green is deleted from the domain 

of NT, SA, and NSW. After V = blue, blue, is deleted from the domains of NSW and 

SA, leaving SA with no legal values. 
 

Constraint propagation 

Although forward checking detects many inconsistencies, it does not detect all of them. 

Constraint propagation is the general term for propagating the implications of a 

constraint on one variable onto other variables. 

Arc Consistency 

 

Figure 2.37 Arc Consistency 
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Figure 2.38 Arc Consistency –CSP 

 

k-Consistency 

Local Search for CSPs 

  

The Structure of Problems Problem Structure 

 

Independent Subproblems 

 

Figure 2.39 Independent Subproblems 
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Tree-Structured CSPs 

 

Figure 2.40 Tree-Structured CSPs 

 

2.30 ADVERSARIAL SEARCH 

Competitive environments, in which the agent’s goals are in conflict, give rise to 

adversarial search problems – often known as games. 

Games 

Mathematical Game Theory, a branch of economics, views any multiagent 

environment as a game provided that the impact of each agent on the other is “significant”, 

regardless of whether the agents are cooperative or competitive. In, AI, “games” are 

deterministic, turn-taking, two-player, zero-sum games of perfect information. This means 

deterministic, fully observable environments in which there are two agents whose actions must 

alternate and in which the utility values at the end of the game are always equal and opposite. 

For example, if one player wins the game of chess(+1),the other player necessarily loses(-1). It 

is this opposition between the agents’ utility functions that makes the situation adversarial. 

Formal Definition of Game 

We will consider games with two players, whom we will call MAX and MIN. MAX 

moves first, and then they take turns moving until the game is over. At the end of the game, 

points are awarded to the winning player and penalties are given to the loser. A game can be 

formally defined as a search problem with the following components: 

o The initial state, which includes the board position and identifies the player to move. 

o A successor function, which returns a list of (move, state) pairs, each indicating a legal 

move and the resulting state. 
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o A terminal test, which describes when the game is over. States where the game has 

ended are called terminal states. 

o A utility function (also called an objective function or payoff function), which give a 

numeric value for the terminal states. In chess, the outcome is a win, loss, or draw, with 

values+1,-1, or 0. he payoffs in backgammon range from +192 to -192. 

Game Tree 

The initial state and legal moves for each side define the game tree for the game. 

Figure 2.18 shows the part of the game tree for tic-tac-toe (noughts and crosses). From the 

initial state, MAX has nine possible moves. Play alternates between MAX’s placing an X and 

MIN’s placing a 0 until we reach leaf nodes corresponding to the terminal states such that one 

player has three in a row or all the squares are filled. He number on each leaf node indicates 

the utility value of the terminal state from the point of view of MAX; high values are assumed 

to be good for MAX and bad for MIN. It is the MAX’s job to use the search tree (particularly 

the utility of terminal states) to determine the best move. 

 

Figure 2.41 A partial search tree. The top node is the initial state, and MAX 

move first, placing an X in an empty square. 

 

Optimal Decisions in Games 

In normal search problem, the optimal solution would be a sequence of move leading 

to a goal state – a terminal state that is a win. In a game, on the other hand, MIN has something 



60 

to say about it, MAX therefore must find a contingent strategy, which specifies MAX’s move 

in the initial state, then MAX’s moves in the states resulting from every possible response by 

MIN, then MAX’s moves in the states resulting from every possible response by MIN those 

moves, and so on. An optimal strategy leads to outcomes at least as good as any other strategy 

when one is playing an infallible opponent. 

 

Figure 2.42 Optimal Decisions in Games 

 

 

Figure 2.43  MAX-VALUE and MIN-VALUE 
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Figure 2.44 An algorithm for calculating minimax decisions. It returns the action 

corresponding to the best possible move, that is, the move that leads to the outcome 

with the best utility, under the assumption that the opponent plays to minimize 

utility. The functions MAX-VALUE and MIN-VALUE go through the whole game 

tree, all the way to the leaves, to determine the backed-up value of a state. 

 

The minimax Algorithm 

The minimax algorithm computes the minimax decision from the current state. It uses 

a simple recursive computation of the minimax values of each successor state, directly 

implementing the defining equations. The recursion proceeds all the way down to the leaves of 

the tree, and then the minimax values are backed up through the tree as the recursion unwinds. 

For example in Figure 2.19,the algorithm first recourses down to the three bottom left nodes, 

and uses the utility function on them to discover that their values are 3, 12, and 8 respectively. 

Then it takes the minimum of these values, 3, and returns it as the backed-up value of node B. 

A similar process gives the backed up values of 2 for C and 2 for D. Finally, we take the 

maximum of 3, 2, and 2 to get the backed-up value of 3 at the root node. The minimax algorithm 

performs a complete depth-first exploration of the game tree. If the maximum depth of the tree 

is m, and there are b legal moves at each point, then the time complexity of the minimax 

algorithm is O(bm). The space complexity is O(bm) for an algorithm that generates successors 

at once. 

Alpha-Beta Pruning 

The problem with minimax search is that the number of game states it has to examine 

is exponential in the number of moves. Unfortunately, we can’t eliminate the exponent, but 
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we can effectively cut it in half. By performing pruning, we can eliminate large part of the tree 

from consideration. We can apply the technique known as alpha beta pruning, when applied 

to a minimax tree, it returns the same move as minimax would, but prunes away branches that 

cannot possibly influence the final decision. 

Alpha Beta pruning gets its name from the following two parameters that describe 

bounds on the backed-up values that appear anywhere along the path: 

o α : the value of the best (i.e., highest-value) choice we have found so far at any 

choice point along the path of MAX. 

o β: the value of best (i.e., lowest-value) choice we have found so far at any choice 

point along the path of MIN. 

Alpha Beta search updates the values of α and β as it goes along and prunes the 

remaining branches at anode(i.e., terminates the recursive call) as soon as the value of the 

current node is known to be worse than the current α and β value for MAX and MIN, 

respectively. The complete algorithm is given in Figure. The effectiveness of alpha-beta 

pruning is highly dependent on the order in which the successors are examined. It might be 

worthwhile to try to examine first the successors that are likely to be the best. In such case, it 

turns out that alpha-beta needs to examine only O(bd/2) nodes to pick the best move, instead of 

O(bd) for minimax. This means that the effective branching factor becomes sqrt(b) instead of 

b – for chess,6 instead of 35. Put an other way alpha-beta cab look ahead roughly twice as far 

as minimax in the same amount of time. 
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Figure 2.45 The alpha beta search algorithm. These routines are the same as the 

minimax routines in figure 2.20,except for the two lines in each of MIN-VALUE 

and MAX-VALUE that maintain α and β 

 

Key points in Alpha-beta Pruning 

• Alpha: Alpha is the best choice or the highest value that we have found at any instance 

along the path of Maximizer. The initial value for alpha is – ∞. 

• Beta: Beta is the best choice or the lowest value that we have found at any instance 

along the path of Minimizer. The initial value for alpha is + ∞. 

• The condition for Alpha-beta Pruning is that α >= β. 

• Each node has to keep track of its alpha and beta values. Alpha can be updated only 

when it’s MAX’s turn and, similarly, beta can be updated only when it’s MIN’s chance. 

• MAX will update only alpha values and MIN player will update only beta values. 

• The node values will be passed to upper nodes instead of values of alpha and beta during 

go into reverse of tree. 

• Alpha and Beta values only be passed to child nodes. 

Working of Alpha-beta Pruning 

1. We will first start with the initial move. We will initially define the alpha and beta 

values as the worst case i.e. α = -∞ and β= +∞. We will prune the node only when alpha 

becomes greater than or equal to beta. 
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Figure 2.46 Step 1 Alpha-beta Pruning 

 

2.  Since the initial value of alpha is less than beta so we didn’t prune it. Now it’s turn for 

MAX. So, at node D, value of alpha will be calculated. The value of alpha at node D 

will be max (2, 3). So, value of alpha at node D will be 3. 

3.  Now the next move will be on node B and its turn for MIN now. So, at node B, the 

value of alpha beta will be min (3, ∞). So, at node B values will be alpha= – ∞ and beta 

will be 3. 

 

Figure 2.47 Step 2 Alpha-beta Pruning 

 

In the next step, algorithms traverse the next successor of Node B which is node E, and 

the values of α= -∞, and β= 3 will also be passed. 
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4.  Now it’s turn for MAX. So, at node E we will look for MAX. The current value of 

alpha at E is – ∞ and it will be compared with 5. So, MAX (- ∞, 5) will be 5. So, at 

node E, alpha = 5, Beta = 5. Now as we can see that alpha is greater than beta which is 

satisfying the pruning condition so we can prune the right successor of node E and 

algorithm will not be traversed and the value at node E will be 5. 

 

Figure 2.48 Step 3 Alpha-beta Pruning 

 

6.  In the next step the algorithm again comes to node A from node B. At node A alpha 

will be changed to maximum value as MAX (- ∞, 3). So now the value of alpha and 

beta at node A will be (3, + ∞) respectively and will be transferred to node C. These 

same values will be transferred to node F. 

7.  At node F the value of alpha will be compared to the left branch which is 0. So, MAX 

(0, 3) will be 3 and then compared with the right child which is 1, and MAX (3,1) = 3 

still α remains 3, but the node value of F will become 1. 

 

Figure 2.49 Step 4 Alpha-beta Pruning 



66 

8.  Now node F will return the node value 1 to C and will compare to beta value at C. Now 

its turn for MIN. So, MIN (+ ∞, 1) will be 1. Now at node C, α= 3, and β= 1 and alpha 

is greater than beta which again satisfies the pruning condition. So, the next successor 

of node C i.e. G will be pruned and the algorithm didn’t compute the entire subtree G. 

 

Figure 2.50 Step 5 Alpha-beta Pruning 
 

Now, C will return the node value to A and the best value of A will be MAX (1, 3) will 

be 3. 

 

Figure 2.51 Step 6 Alpha-beta Pruning 

 

The above represented tree is the final tree which is showing the nodes which are 

computed and the nodes which are not computed. So, for this example the optimal value of the 

maximizer will be 3. 
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UNIT 3 

KNOWLEDGE REPRESENTATION 

First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-

Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-

Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for 

Categories – Reasoning with Default Information. 

First order Logic 

Propositional logic is a declarative language because its semantics is based on a truth relation 

between sentences and possible worlds. It also has sufficient expressive power to deal with 

partial information, using disjunction and negation. 

First-Order Logic is a logic which is sufficiently expressive to represent a good deal of our 

common sense knowledge.  

• It is also either includes or forms the foundation of many other representation 

languages.  

• It is also called as First-Order Predicate calculus.  

• It is abbreviated as FOL or FOPC  

FOL adopts the foundation of propositional logic with all its advantages to build a more 

expressive logic on that foundation, borrowing representational ideas from natural language 

while avoiding its drawbacks. 

The Syntax of natural language contains elements such as,  

1. Nouns and noun phrases that refer to objects (Squares, pits, rumpuses)  

2. Verbs and verb phrases that refer to among objects ( is breezy, is adjacent to)  

Some of these relations are functions-relations in which there is only one “Value” for a 

given “input”. Whereas propositional logic assumes the world contains facts, first-order logic 

(like natural language) assumes the world contains Objects: people, houses, numbers, colors, 

baseball games, wars, … 

Relations: red, round, prime, brother of, bigger than, part of, comes between,… 

Functions: father of, best friend, one more than, plus, … 
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3.1 SPECIFY THE SYNTAX OF FIRST-ORDER LOGIC IN BNF FORM 

The domain of a model is DOMAIN the set of objects or domain elements it contains. 

The domain is required to be nonempty—every possible world must contain at least one object. 

Figure 8.2 shows a model with five objects: Richard the Lionheart, King of England from 1189 

to 1199; his younger brother, the evil King John, who ruled from 1199 to 1215; the left legs of 

Richard and John; and a crown. The objects in the model may be related in various ways. In 

the figure, Richard and John are brothers. Formally speaking, a relation TUPLE is just the set 

of tuples of objects that are related. (A tuple is a collection of objects arranged in a fixed order 

and is written with angle brackets surrounding the objects.) Thus, the brotherhood relation in 

this model is the set  

 

 

Figure 3.1 First-Order Logic in BNF Form 

 

The crown is on King John’s head, so the “on head” relation contains just one tuple, _ 

the crown, King John_. The “brother” and “on head” relations are binary relations — that is, 

they relate pairs of objects. Certain kinds of relationships are best considered as functions, in 

that a given object must be related to exactly one object in this way. For example, each person 

has one left leg, so the model has a unary “left leg” function that includes the following 

mappings: 
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The five objects are,  

  Richard the Lionheart 

  His younger brother  

  The evil King John  

  The left legs of Richard and John  

  A crown  

• The objects in the model may be related in various ways, In the figure Richard and John 

are brothers.  

• Formally speaking, a relation is just the set of tuples of objects that are related.  

• A tuple is a collection of Objects arranged in a fixed order and is written with angle 

brackets surrounding the objects.  

• Thus, the brotherhood relation in this model is the set {(Richard the Lionheart, King 

John),(King John, Richard the Lionheart)}  

• The crown is on King John’s head, so the “on head” relation contains just one tuple, 

(the crown, King John).  

o The relation can be binary relation relating pairs of objects (Ex:- “Brother”) or unary 

relation representing a common object (Ex:- “Person” representing both Richard 

and John) 

Certain kinds of relationships are best considered as functions that relates an object to 

exactly one object.  

  For Example:- each person has one left leg, so the model has a unary “left leg”  function 

that includes the following mappings (Richard the Lionheart) ----> Richard’s left leg 

(King John) ----> John’s left leg  

  Symbols and Interpretations:  

  The basic syntactic elements of first-order logic are the symbols that stand for objects, 

relations and functions  

  Kinds of Symbols  

  The symbols come in three kinds namely,  

  Constant Symbols standing for Objects (Ex:- Richard)  

  Predicate Symbols standing for Relations (Ex:- King)  

  Function Symbols stands for functions (Ex:-Left Leg)  
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o Symbols will begin with uppercase letters  

o The choice of names is entirely up to the user  

o Each predicate and function symbol comes with an arity 

o Arity fixes the number of arguments.  

  The semantics must relate sentences to models in order to determine truth.  

  To do this, an interpretation is needed specifying exactly which objects, relations and 

functions are referred to by the constant, predicate and function symbols.  

  One possible interpretation called as the intended interpretation- is as follows;  

  Richard refers to Richard the Lion heart and John refers to the evil King John.  

  Brother refers to the brotherhood relation, that is the set of tuples of objects given in 

equation {(Richard the Lionheart, King John),(King John, Richard the 

Lionheart)}  

  On Head refers to the “on head” relation that holds between the crown and King John; 

Person, King and Crown refer to the set of objects that are persons, kings and crowns.  

  Left leg refers to the “left leg” function, that is, the mapping given in {(Richard the 

Lion heart, King John), (King John, Richard the Lionheart)} 

A complete description from the formal grammar is as follows 
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Term A term is a logical expression that refers TERM to an object. Constant symbols 

are therefore terms, but it is not always convenient to have a distinct symbol to name every 

object. For example, in English we might use the expression “King John’s left leg” rather than 

giving a name to his leg. This is what function symbols are for: instead of using a constant 

symbol, we use Left Leg (John). The formal semantics of terms is straightforward. Consider a 

term f(t1, . . . , tn). The function symbol f refers to some function in the model. Atomic 

sentences Atomic sentence (or atom for short) is formed from a predicate symbol optionally 

followed by a parenthesized list of terms, such as Brother (Richard, John). Atomic sentences 

can have complex terms as arguments. Thus, Married (Father (Richard),Mother (John)) states 

that Richard the Lionheart’s father is married to King John’s mother.  

Complex Sentences 

We can use logical connectives to construct more complex sentences, with the same 

syntax and semantics as in propositional calculus  

￢Brother (LeftLeg (Richard), John)  

Brother (Richard, John) ∧ Brother (John, Richard)  

King(Richard ) ∨ King(John)  

￢King(Richard) ⇒ King(John).  

Quantifiers 

Quantifiers are used to express properties of entire collections of objects, instead of 

enumerating the objects by name. First-order logic contains two standard quantifiers, called 

universal and existential  

Universal quantification (∀) 

“All kings are persons,” is written in first-order logic as 

∀x King(x) ⇒ Person(x)  

∀ is usually pronounced “For all. . .” Thus, the sentence says, “For all x, if x is a king, 

then x is a person.” The symbol x is called a variable. A term with no variables is called a 

ground term.  

Consider the model shown in Figure 8.2 and the intended interpretation that goes with 

it. We can extend the interpretation in five ways: 

x → Richard the Lionheart, 

x → King John, x → Richard’s left leg, 

x → John’s left leg, 

x → the crown.  
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The universally quantified sentence ∀ x King(x) ⇒ Person(x) is true in the original 

model if the sentence King(x) ⇒ Person(x) is true under each of the five extended 

interpretations. That is, the universally quantified sentence is equivalent to asserting the 

following five sentences: 

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.  

King John is a king ⇒ King John is a person. 

Richard’s left leg is a king ⇒ Richard’s left leg is a person.  

John’s left leg is a king ⇒ John’s left leg is a person.  

The crown is a king ⇒ the crown is a person. 

Existential quantification (∃) 

Universal quantification makes statements about every object. Similarly, we can make 

a statement about some object in the universe without naming it, by using an existential 

quantifier. To say, for example, that King John has a crown on his head, we write  

∃x Crown(x) ∧OnHead(x, John)  

∃x is pronounced “There exists an x such that . . .” or “For some x . . .” More precisely, 

∃x P is true in a given model if P is true in at least one extended interpretation that assigns x to 

a domain element. That is, at least one of the following is true:  

Richard the Lionheart is a crown ∧ Richard the Lionheart is on John’s head;  

King John is a crown ∧ King John is on John’s head;  

Richard’s left leg is a crown ∧ Richard’s left leg is on John’s head;  

John’s left leg is a crown ∧ John’s left leg is on John’s head;  

The crown is a crown ∧ the crown is on John’s head.  

The fifth assertion is true in the model, so the original existentially quantified sentence 

is true in the model. Just as ⇒ appears to be the natural connective to use with ∀, ∧ is the natural 

connective to use with ∃. 

 Using ∧ as the main connective with ∀ led to an overly strong statement in the example 

in the previous section; using ⇒ with ∃ usually leads to a very weak statement, indeed. Consider 

the following sentence: 

∃x Crown(x) ⇒OnHead(x, John)   

Applying the semantics, we see that the sentence says that at least one of the following 

assertions is true:  

Richard the Lionheart is a crown ⇒ Richard the Lionheart is on John’s head;  

King John is a crown ⇒ King John is on John’s head;  

Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head; 
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and so on. Now an implication is true if both premise and conclusion are true, or if its premise 

is false. So if Richard the Lionheart is not a crown, then the first assertion is true and the 

existential is satisfied. So, an existentially quantified implication sentence is true whenever any 

object fails to satisfy the premise  

Nested quantifiers 

We will often want to express more complex sentences using multiple quantifiers. The 

simplest case is where the quantifiers are of the same type. For example, “Brothers are siblings” 

can be written as  

∀x∀ y Brother (x, y) ⇒ Sibling(x, y)  

Consecutive quantifiers of the same type can be written as one quantifier with several 

variables. For example, to say that siblinghood is a symmetric relationship, we can write 

∀x, y Sibling(x, y) ⇔ Sibling(y, x). In other cases we will have mixtures. “Everybody 

loves somebody” means that for every person, there is someone that person loves:  

∀x∃ y Loves(x, y). 

 On the other hand, to say “There is someone who is loved by everyone,” we write  

∃y∀ x Loves(x, y).  

The order of quantification is therefore very important. It becomes clearer if we insert 

parentheses.  

∀x (∃ y Loves(x, y)) says that everyone has a particular property, namely, the property 

that they love someone. On the other hand,  

∃y (∀ x Loves(x, y)) says that someone in the world has a particular property, namely 

the property of being loved by everybody.  

Connections between ∀ and ∃ 

The two quantifiers are actually intimately connected with each other, through negation. 

Asserting that everyone dislikes parsnips is the same as asserting there does not exist someone 

who likes them, and vice versa: 

∀x￢Likes(x, Parsnips ) is equivalent to ￢ 

∀x￢Likes(x, Parsnips ) is equivalent to ￢∃ x Likes(x, Parsnips). We can go one 

step further: “Everyone likes ice cream” means that there is no one who does not like 

ice cream: 

∀x Likes(x, IceCream) is equivalent to ￢∃ x ￢Likes(x, IceCream). 
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Equality  

We can use the equality symbol to signify that two terms refer to the same object. For 

example,  

Father (John)=Henry  

says that the object referred to by Father (John) and the object referred to by Henry are the 

same.  

The equality symbol can be used to state facts about a given function, as we just did for 

the Father symbol. It can also be used with negation to insist that two terms are not the same 

object. To say that Richard has at least two brothers, we would write  

∃x, y Brother (x,Richard ) ∧ Brother (y,Richard ) ∧￢(x=y). 

Compare different knowledge representation languages 

 

Figure 3.2 Formal languages and their ontological and epistemological commitments 

 

What are the syntactic elements of First Order Logic? 

The basic syntactic elements of first-order logic are the symbols that stand for objects, 

relations, and functions. The symbols, come in three kinds: 

a) constant symbols, which stand for objects; 

b) predicate symbols, which stand for relations; 

c) and function symbols, which stand for functions. 

We adopt the convention that these symbols will begin with uppercase letters. Example: 

Constant symbols : 

Richard and John; 

predicate symbols : 

Brother, On Head, Person, King, and Crown; function symbol : LeftLeg. 
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Quantifiers 

Quantifiers are used to express properties of entire collections of objects, instead of 

enumerating the objects by name if a logic that allows object is found.  

It has two type,  

 The following are the types of standard quantifiers,  

 Universal  

 Existential 

Universal quantification 

Explain Universal Quantifiers with an example. 

Rules such as "All kings are persons,'' is written in first-order logic as 

x King(x) => Person(x) 

where  is pronounced as “ For all..” 

Thus, the sentence says, "For all x, if x is a king, then is a person." The symbol x is called a 

variable(lower case letters) 

The sentence x P, where P is a logical expression says that P is true for every object x. 
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The universally quantified sentence is equivalent to asserting the following five sentences  

Richard the Lionheart ------ Richard the Lionheart is a person 

King John is a King ------ King John is a Person  

Richard’s left leg is King -------- Richard’s left leg is a person  

John’s left leg is a King -------- John’s left leg is a person 

 The crown is a King -------- The crown is a Person 

Existential quantification 

Universal quantification makes statements about every object. 

It is possible to make a statement about some object in the universe without naming 

it,by using an existential quantifier. 

Example 

“King John has a crown on his head” 

x Crown(x) ^ OnHead(x,John) 

x is pronounced “There exists an x such that..” or “ For some x ..” 

 

 

Nested Quantifiers  

More complex sentences are expressed using multiple quantifiers.  

The following are the some cases of multiple quantifiers,  

The simplest case where the quantifiers are of the same type.  
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For Example:- “Brothers are Siblings” can be written as 

 

Consecutive quantifiers of the same type can be written as one quantifier with  

several variables.  For Example:- to say that siblinghood is a symmetric relationship as 

 

3.2 THE WUMPUS WORLD 

The wumpus world is a cave consisting of rooms connected by passageways. Lurking 

somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room. 

The wumpus can be shot by an agent, but the agent has only one arrow. Some rooms contain 

bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus, 

which is too big to fall in). The only mitigating feature of this bleak environment is the 

possibility of finding a heap of gold. Although the wumpus world is rather tame by modern 

computer game standards, it illustrates some important points about intelligence. A sample 

wumpus world is shown in Figure  

 

Figure 3.3 wumpus world 
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To specify the agent's task, we specify its percepts, actions, and goals. In the wumpus 

world, these are as follows:  

•  In the square containing the wumpus and in the directly (not diagonally) 

adjacent squares the agent will perceive a stench.  

•  In the squares directly adjacent to a pit, the agent will perceive a breeze. 

 •  In the square where the gold is, the agent will perceive a glitter. 

 •  When an agent walks into a wall, it will perceive a bump.  

•  When the wumpus is killed, it gives out a woeful scream that can be perceived 

anywhere in the cave.  

•  The percepts will be given to the agent in the form of a list of five symbols; for 

example, if there is a stench, a breeze, and a glitter but no bump and no scream, 

the agent will receive the percept [Stench, Breeze, Glitter, None, None]. The 

agent cannot perceive its own location.  

•  Just as in the vacuum world, there are actions to go forward, turn right by 90°, 

and turn left by 90°. In addition, the action Grab can be used to pick up an object 

that is in the same square as the agent. The action Shoot can be used to fire an 

arrow in a straight line in the direction the agent is facing. The arrow continues 

until it either hits and kills the wumpus or hits the wall. The agent only has one 

arrow, so only the first Shoot action has any effect. 

The wumpus agent receives a percept vector with five elements. The corresponding 

first order sentence stored in the knowledge base must include both the percept and the time at 

which it occurred; otherwise, the agent will get confused about when it saw what. We use 

integers for time steps. A typical percept sentence would be  

Percept ([Stench, Breeze, Glitter, None, None], 5).  

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. 

The actions in the wumpus world can be represented by logical terms:  

Turn(Right ), Turn(Left ), Forward, Shoot, Grab, Climb. 

To determine which is best, the agent program executes the query  

ASKVARS(∃ a BestAction(a, 5)),  

which returns a binding list such as {a/Grab}. The agent program can then return Grab 

as the action to take. The raw percept data implies certain facts about the current state.  

For example:  

∀t,s,g,m,c Percept ([s,Breeze,g,m,c],t) ⇒ Breeze(t),  

∀t,s,b,m,c Percept ([s,b,Glitter,m,c],t) ⇒ Glitter (t) 
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These rules exhibit a trivial form of the reasoning process called perception. Simple 

“reflex” behavior can also be implemented by quantified implication sentences.  

For example, we have ∀ t Glitter (t) ⇒BestAction(Grab, t).  

Given the percept and rules from the preceding paragraphs, this would yield the desired 

conclusion  

BestAction(Grab, 5)—that is, Grab is the right thing to do. For example, if the agent is 

at a square and perceives a breeze, then that square is breezy: 

∀s, t At(Agent, s, t) ∧ Breeze(t) ⇒ Breezy(s). 

It is useful to know that a square is breezy because we know that the pits cannot move 

about. Notice that Breezy has no time argument. Having discovered which places are breezy 

(or smelly) and, very important, not breezy (or not smelly), the agent can deduce where the pits 

are (and where the wumpus is). first-order logic just needs one axiom:  

∀s Breezy(s) ⇔∃r Adjacent (r, s) ∧ Pit(r). 

3.3 SUBSTITUTION  

Let us begin with universal quantifiers 

∀x King(x) ∧ Greedy(x) ⇒ Evil(x).  

Then it seems quite permissible to infer any of the following sentences:  

King(John) ∧ Greedy(John) ⇒ Evil(John)  

King(Richard ) ∧ Greedy(Richard) ⇒ Evil(Richard)  

King(Father (John)) ∧ Greedy(Father (John)) ⇒ Evil(Father (John)).  

The rule of Universal Instantiation (UI for short) says that we can infer any sentence 

obtained by substituting a ground term (a term without variables) for the variable.  

Let SUBST(θ,α) denote the result of applying the substitution θ to the sentence α. Then 

the rule is written  

∀v α SUBST({v/g}, α) for any variable v and ground term g.  

For example, the three sentences given earlier are obtained with the substitutions  

{x/John}, {x/Richard }, and {x/Father (John)}. 

In the rule for Existential Instantiation, the variable is replaced by a single new constant 

symbol. The formal statement is as follows: for any sentence α, variable v, and constant symbol 

k that does not appear elsewhere in the knowledge base, 

∃v α SUBST({v/k}, α) For example, from the sentence  
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∃x Crown(x) ∧OnHead(x, John) we can infer the sentence  

Crown(C1) ∧OnHead(C1, John) 

EXAMPLE 

Suppose our knowledge base contains just the sentences  

∀x King(x) ∧ Greedy(x) ⇒ Evil(x)  

King(John)  

Greedy(John) Brother (Richard, John) 

Then we apply UI to the first sentence using all possible ground-term substitutions from 

the vocabulary of the knowledge base—in this case,  

{x/John} and {x/Richard }. We obtain 

King(John) ∧ Greedy(John) ⇒ Evil(John)  

King(Richard ) ∧ Greedy(Richard) ⇒ Evil(Richard),  

and we discard the universally quantified sentence. Now, the knowledge base is essentially 

propositional if we view the ground atomic sentences  

King(John),  

Greedy(John), and so on—as proposition symbols. 

3.4 UNIFICATION  

Lifted inference rules require finding substitutions that make different logical 

expressions look identical. This process is called unification and is a key component of all first-

order inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier for 

them if one exists: UNIFY(p, q)=θ where SUBST(θ, p)= SUBST(θ, q). 

Suppose we have a query AskVars(Knows(John, x)): whom does John know? Answers 

can be found by finding all sentences in the knowledge base that unify with Knows(John, x). 

Here are the results of unification with four different sentences that might be in the 

knowledge base: UNIFY(Knows(John, x), Knows(John, Jane)) = {x/Jane}  

UNIFY(Knows(John, x), Knows(y, Bill )) = {x/Bill, y/John}  

UNIFY(Knows(John, x), Knows(y, Mother (y))) = {y/John, x/Mother (John)} 

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail. 

The last unification fails because x cannot take on the values John and Elizabeth at the 

same time. Now, remember that Knows(x, Elizabeth) means “Everyone knows Elizabeth,” so 

we should be able to infer that John knows Elizabeth. The problem arises only because the two 

sentences happen to use the same variable name, x. The problem can be avoided by 
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standardizing apart one of the two sentences being unified, which means renaming its variables 

to avoid name clashes. For example, we can rename x in 

Knows(x, Elizabeth) to x17 (a new variable name) without changing its meaning.  

Now the unification will work  

UNIFY(Knows(John, x), Knows(x17, Elizabeth)) = {x/Elizabeth, x17/John} UNIFY 

should return a substitution that makes the two arguments look the same. But there could be 

more than one such unifier. 

 For example,  

UNIFY(Knows(John, x), Knows(y, z)) could return  

{y/John, x/z} or {y/John, x/John, z/John}. 

The first unifier gives Knows(John, z) as the result of unification, whereas the second 

gives Knows(John, John). The second result could be obtained from the first by an additional 

substitution {z/John}; we say that the first unifier is more general than the second, because it 

places fewer restrictions on the values of the variables. An algorithm for computing most 

general unifiers is shown in Figure. 

The process is simple: recursively explore the two expressions simultaneously “side by 

side,” building up a unifier along the way, but failing if two corresponding points in the 

structures do not match. There is one expensive step: when matching a variable against a 

complex term, one must check whether the variable itself occurs inside the term; if it does, the 

match fails because no consistent unifier can be constructed. 

 

Figure 3.4 Recursively explore 
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In artificial intelligence, forward and backward chaining is one of the important topics, 

but before understanding forward and backward chaining lets first understand that from where 

these two terms came. 

Inference engine 

The inference engine is the component of the intelligent system in artificial intelligence, 

which applies logical rules to the knowledge base to infer new information from known facts. 

The first inference engine was part of the expert system. Inference engine commonly proceeds 

in two modes, which are: 

a. Forward chaining 

b. Backward chaining 

Horn Clause and Definite clause 

Horn clause and definite clause are the forms of sentences, which enables knowledge 

base to use a more restricted and efficient inference algorithm. Logical inference algorithms 

use forward and backward chaining approaches, which require KB in the form of the first-order 

definite clause.nt 

Definite clause: A clause which is a disjunction of literals with exactly one positive 

literal is known as a definite clause or strict horn clause. 

Horn clause: A clause which is a disjunction of literals with at most one positive 

literal is known as horn clause. Hence all the definite clauses are horn clauses. 

Example: (¬ p V ¬ q V k). It has only one positive literal k. 

It is equivalent to p ∧ q → k. 

A. Forward Chaining 

Forward chaining is also known as a forward deduction or forward reasoning method 

when using an inference engine. Forward chaining is a form of reasoning which start with 

atomic sentences in the knowledge base and applies inference rules (Modus Ponens) in the 

forward direction to extract more data until a goal is reached. 

The Forward-chaining algorithm starts from known facts, triggers all rules whose 

premises are satisfied, and add their conclusion to the known facts. This process repeats until 

the problem is solved. 

Properties of Forward-Chaining 

o It is a down-up approach, as it moves from bottom to top. 

o It is a process of making a conclusion based on known facts or data, by starting 

from the initial state and reaches the goal state. 



84 

o Forward-chaining approach is also called as data-driven as we reach to the goal 

using available data. 

o Forward -chaining approach is commonly used in the expert system, such as CLIPS, 

business, and production rule systems. 

Consider the following famous example which we will use in both approaches: 

Example 

"As per the law, it is a crime for an American to sell weapons to hostile nations. Country 

A, an enemy of America, has some missiles, and all the missiles were sold to it by Robert, who 

is an American citizen." 

Prove that "Robert is criminal." 

To solve the above problem, first, we will convert all the above facts into first-order 

definite clauses, and then we will use a forward-chaining algorithm to reach the goal. 

Facts Conversion into FOL 

o It is a crime for an American to sell weapons to hostile nations. (Let's say p, q, and r 

are variables) 

American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p)       …(1) 

o Country A has some missiles. ∃p Owns(A, p) ∧ Missile(p). It can be written in two 

definite clauses by using Existential Instantiation, introducing new Constant T1. 

Owns(A, T1)                     …(2) 

Missile(T1)                     …(3) 

o All of the missiles were sold to country A by Robert. 

∀p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A)          …(4) 

o Missiles are weapons. 

Missile(p) → Weapons (p)                   …(5) 

o Enemy of America is known as hostile. 

Enemy(p, America) →Hostile(p)                  …(6) 

o Country A is an enemy of America. 

Enemy (A, America)                    …(7) 

o Robert is American 

American(Robert).                    …(8) 
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Forward chaining proof 

Step-1 

In the first step we will start with the known facts and will choose the sentences which 

do not have implications, such as: American (Robert), Enemy(A, America), Owns(A, T1), and 

Missile(T1). All these facts will be represented as below. 

 

Figure 3.5 

 

Step-2 

At the second step, we will see those facts which infer from available facts and with 

satisfied premises. 

Rule-(1) does not satisfy premises, so it will not be added in the first iteration. 

Rule-(2) and (3) are already added. 

Rule-(4) satisfy with the substitution {p/T1}, so Sells (Robert, T1, A) is added, which infers 

from the conjunction of Rule (2) and (3). 

Rule-(6) is satisfied with the substitution(p/A), so Hostile(A) is added and which infers from 

Rule-(7). 

 

Figure 3.6 

 

Step-3 

At step-3, as we can check Rule-(1) is satisfied with the substitution {p/Robert, q/T1, 

r/A}, so we can add Criminal (Robert) which infers all the available facts. And hence we 

reached our goal statement. 
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Figure 3.7 

 

Hence it is proved that Robert is Criminal using forward chaining approach. 

B.  Backward Chaining 

Backward-chaining is also known as a backward deduction or backward reasoning method 

when using an inference engine. A backward chaining algorithm is a form of reasoning, which 

starts with the goal and works backward, chaining through rules to find known facts that 

support the goal. 

Properties of backward chaining 

o It is known as a top-down approach. 

o Backward-chaining is based on modus ponens inference rule. 

o In backward chaining, the goal is broken into sub-goal or sub-goals to prove the facts 

true. 

o It is called a goal-driven approach, as a list of goals decides which rules are selected 

and used. 

o Backward -chaining algorithm is used in game theory, automated theorem proving 

tools, inference engines, proof assistants, and various AI applications. 

o The backward-chaining method mostly used a depth-first search strategy for proof. 

Example 

In backward-chaining, we will use the same above example, and will rewrite all the rules. 

o American (p) ∧ weapon(q) ∧ sells (p, q, r) ∧ hostile(r) → Criminal(p)  …(1) 

Owns(A, T1)                        …(2) 
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o Missile(T1) 

o ?p Missiles(p) ∧ Owns (A, p) → Sells (Robert, p, A)              …(4) 

o Missile(p) → Weapons (p)                      …(5) 

o Enemy(p, America) →Hostile(p)                      …(6) 

o Enemy (A, America)                       …(7) 

o American (Robert).                       …(8) 

Backward-Chaining proof 

In Backward chaining, we will start with our goal predicate, which is Criminal (Robert), 

and then infer further rules. 

Step-1 

At the first step, we will take the goal fact. And from the goal fact, we will infer other 

facts, and at last, we will prove those facts true. So our goal fact is "Robert is Criminal," so 

following is the predicate of it. 

 

Step-2 

At the second step, we will infer other facts form goal fact which satisfies the rules. So 

as we can see in Rule-1, the goal predicate Criminal (Robert) is present with substitution 

{Robert/P}. So we will add all the conjunctive facts below the first level and will replace p 

with Robert. 

Here we can see American (Robert) is a fact, so it is proved here. 

 

Figure 3.8 
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Step-3 

t At step-3, we will extract further fact Missile(q) which infer from Weapon(q), as it 

satisfies Rule-(5). Weapon (q) is also true with the substitution of a constant T1 at q. 

 

Figure 3.9 

 

Step-4 

At step-4, we can infer facts Missile(T1) and Owns(A, T1) form Sells(Robert, T1, r) 

which satisfies the Rule- 4, with the substitution of A in place of r. So these two statements are 

proved here. 

 

Figure 3.10 
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Step-5 

At step-5, we can infer the fact Enemy(A, America) from Hostile(A) which satisfies 

Rule- 6. And hence all the statements are proved true using backward chaining. 

 

Figure 3.11 

 

Suppose you have a production system with the FOUR rules: R1: IF A AND C then F 

R2: IF A AND E, THEN G R3: IF B, THEN E R4: R3: IF G, THEN D and you have four initial 

facts: A, B, C, D. PROVE A&B TRUE THEN D IS TRUE. Explain what is meant by “forward 

chaining”, and show explicitly how it can be used in this case to determine new facts. 

3.5 RESOLUTION IN FOL 

Resolution 

Resolution is a theorem proving technique that proceeds by building refutation proofs, 

i.e., proofs by contradictions. It was invented by a Mathematician John Alan Robinson in the 

year 1965. 

Resolution is used, if there are various statements are given, and we need to prove a 

conclusion of those statements. Unification is a key concept in proofs by resolutions. 

Resolution is a single inference rule which can efficiently operate on the conjunctive normal 

form or clausal form. 

Clause: Disjunction of literals (an atomic sentence) is called a clause. It is also known 

as a unit clause. 

Conjunctive Normal Form: A sentence represented as a conjunction of clauses is said 

to be conjunctive normal form or CNF. 
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Steps for Resolution 

1. Conversion of facts into first-order logic. 

2. Convert FOL statements into CNF 

3. Negate the statement which needs to prove (proof by contradiction) 

4. Draw resolution graph (unification). 

To better understand all the above steps, we will take an example in which we will 

apply resolution. 

Example 

a. John likes all kind of food. 

b. Apple and vegetable are food 

c. Anything anyone eats and not killed is food. 

d. Anil eats peanuts and still alive 

e. Harry eats everything that Anil eats. Prove by resolution that: 

f. John likes peanuts. 

Step-1: Conversion of Facts into FOL 

In the first step we will convert all the given statements into its first order logic. 

 

o Eliminate all implication (→) and rewrite 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 

3. ∀x ∀y ¬ [eats(x, y) Λ ¬ killed(x)] V food(y) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

6. ∀x¬ [¬ killed(x) ] V alive(x) 

7. ∀x ¬ alive(x) V ¬ killed(x) 

8. likes(John, Peanuts). 
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o Move negation (¬)inwards and rewrite 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 

3. ∀x ∀y ¬ eats(x, y) V killed(x) V food(y) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀x ¬ eats(Anil, x) V eats(Harry, x) 

6. ∀x ¬killed(x) ] V alive(x) 

7. ∀x ¬ alive(x) V ¬ killed(x) 

8. likes(John, Peanuts). 

o Rename variables or standardize variables 

1. ∀x ¬ food(x) V likes(John, x) 

2. food(Apple) Λ food(vegetables) 

3. ∀y ∀z ¬ eats(y, z) V killed(y) V food(z) 

4. eats (Anil, Peanuts) Λ alive(Anil) 

5. ∀w¬ eats(Anil, w) V eats(Harry, w) 

6. ∀g ¬killed(g) ] V alive(g) 

7. ∀k ¬ alive(k) V ¬ killed(k) 

8. likes(John, Peanuts). 

o Eliminate existential instantiation quantifier by elimination. In this step, we will 

eliminate existential quantifier ∃, and this process is known as Skolemization. But in 

this example problem since there is no existential quantifier so all the statements will 

remain same in this step. 

o Drop Universal quantifiers. In this step we will drop all universal quantifier since all 

the statements are not implicitly quantified so we don't need it. 

1. ¬ food(x) V likes(John, x) 

2. food(Apple) 

3. food(vegetables) 

4. ¬ eats(y, z) V killed(y) V food(z) 

5. eats (Anil, Peanuts) 

6. alive(Anil) 

7. ¬ eats(Anil, w) V eats(Harry, w) 

8. killed(g) V alive(g) 

9. ¬ alive(k) V ¬ killed(k) 

10. likes(John, Peanuts). 

o Distribute conjunction ∧ over disjunction ¬.This step will not make any change in 

this problem. 
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Step-3: Negate the statement to be proved 

In this statement, we will apply negation to the conclusion statements, which will be 

written as ¬likes(John, Peanuts) 

Step-4: Draw Resolution graph 

o Now in this step, we will solve the problem by resolution tree using substitution. For 

the above problem, it will be given as follows: 

 

Figure 3.12 

 

Explanation of Resolution graph 

o In the first step of resolution graph, ¬likes(John, Peanuts), and likes(John, x) get 

resolved (canceled) by substitution of {Peanuts/x}, and we are left with ¬ 

food(Peanuts) 

o In the second step of the resolution graph, ¬ food (Peanuts), and food(z) get resolved 

(canceled) by substitution of { Peanuts/z}, and we are left with ¬ eats(y, Peanuts) V 

killed(y). 

o In the third step of the resolution graph, ¬ eats(y, Peanuts) and eats (Anil, Peanuts) get 

resolved by substitution {Anil/y}, and we are left with Killed(Anil). 

o In the fourth step of the resolution graph, Killed(Anil) and ¬ killed(k) get resolve by 

substitution {Anil/k}, and we are left with ¬ alive(Anil). 
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o In the last step of the resolution graph ¬ alive(Anil) and alive(Anil) get resolved. 

Difference between Predicate Logic and Propositional Logic 

Table 3.1 

S. No. Predicate logic Propositional logic 

1. Predicate logic is a generalization of 

propositional logic that allows us to 

express and infer arguments in infinite 

models. 

A preposition is a declarative statement  

that’s either TRUE or FALSE (but not 

both). 

2. Predicate logic (also called predicate 

calculus and first-order logic) is an 

extension of propositional logic to 

formulas involving terms and 

predicates. The full predicate logic is 

undecidable 

Propositional logic is an axiomatization 

of Boolean logic. Propositional logic is 

decidable, for example by the method of 

truth table. 

3. Predicate logic have variables Propositional logic has variables. 

Parameters are all constant. 

4. A predicate is a logical statement that 

depends on one or more variables (not 

necessarily Boolean variables) 

Propositional logic deals solely with 

propositions and logical connectives. 

5. Predicate logic there are objects, 

properties, functions (relations) are 

involved. 

Proposition logic is represented in terms 

of Boolean variables and logical 

connectives.  

6. In predicate logic, we symbolize subject 

and predicate separately. Logicians 

often use lowercase letters to symbolize 

subjects (or objects) and upper case 

letter to symbolize predicates.  

In propositional logic, we use letters to 

symbolize entire propositions. 

Propositions are statements of the form 

“x is y” where x is a subject and y is a 

predicate.  

7. Predicate logic uses quantifies such as 

universal quantifier (“”), the 

existential quantifier (“”). 

Prepositional logic has not qualifiers. 

8. Example 

Everything is a green as “x Green(x)” 

or 

“Something is blue as “ x Blue(x)”. 

Example 

Everything is a green as “G”  

or 

“Something is blue as “B(x)”. 

 

3.6 KNOWLEDGE REPRESENTATION ONTOLOGICAL ENGINEERING  

Concepts such as Events, Time, Physical Objects, and Beliefs— that occur in many 

different domains. Representing these abstract concepts is sometimes called ontological 

engineering. 
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Figure 3.13 The upper ontology of the world, showing the topics to be 

covered later in the chapter. Each link indicates that the lower concept is a 

specialization of the upper one. Specializations are not necessarily disjoint; 

a human is both an animal and an agent, for example.  

 

The general framework of concepts is called an upper ontology because of the 

convention of drawing graphs with the general concepts at the top and the more specific 

concepts below them, as in Figure  

Categories and Objects 

The organization of objects into categories is a vital part of knowledge representation. 

Although interaction with the world takes place at the level of individual objects, much 

reasoning takes place at the level of categories.  

For example, a shopper would normally have the goal of buying a basketball, rather 

than a particular basketball such as BB9 There are two choices for representing categories in 

first-order logic: predicates and objects. That is, we can use the predicate Basketball (b), or we 

can reify1 the category as an object, Basketballs.  

We could then say Member(b, Basketballs ), which we will abbreviate as b∈ 

Basketballs, to say that b is a member of the category of basketballs. We say 

Subset(Basketballs, Balls), abbreviated as Basketballs ⊂ Balls, to say that Basketballs is a 

subcategory of Balls. Categories serve to organize and simplify the knowledge base through 

inheritance. If we say that all instances of the category Food are edible, and if we assert that 

Fruit is a subclass of Food and Apples is a subclass of Fruit, then we can infer that every apple 

is edible. We say that the individual apples inherit the property of edibility, in this case from 

their membership in the Food category. First-order logic makes it easy to state facts about 

categories, either by relating objects to categories or by quantifying over their members. Here 

are some types of facts, with examples of each:  

•  An object is a member of a category. 
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BB9 ∈ Basketballs 

 •  A category is a subclass of another category. Basketballs ⊂ Balls 

•  All members of a category have some properties. 

(x∈ Basketballs) ⇒ Spherical (x) 

•  Members of a category can be recognized by some properties.  

Orange(x) ∧ Round (x) ∧ Diameter(x)=9.5 ∧ x∈ Balls ⇒ x∈ Basketballs  

•  A category as a whole has some properties. 

Dogs ∈ Domesticated Species  

Notice that because Dogs is a category and is a member of Domesticated Species, the 

latter must be a category of categories. Categories can also be defined by providing necessary 

and sufficient conditions for membership. For example, a bachelor is an unmarried adult male:  

x∈ Bachelors ⇔ Unmarried(x) ∧ x∈ Adults ∧ x∈ Males  

Physical Composition  

We use the general PartOf relation to say that one thing is part of another. Objects can 

be grouped into part of hierarchies, reminiscent of the Subset hierarchy:  

PartOf (Bucharest, Romania)  

PartOf (Romania, EasternEurope)  

PartOf(EasternEurope, Europe)  

PartOf (Europe, Earth)  

The PartOf relation is transitive and reflexive; that is,  

PartOf (x, y) ∧PartOf (y, z) ⇒PartOf (x, z)  

PartOf (x, x) 

Therefore, we can conclude PartOf (Bucharest, Earth).  

For example, if the apples are Apple1, Apple2, and Apple3, then  

BunchOf ({Apple1,Apple2,Apple3})  

denotes the composite object with the three apples as parts (not elements). We can 

define BunchOf in terms of the PartOf relation. Obviously, each element of s is part 

of  

BunchOf (s): ∀x x∈ s ⇒PartOf (x, BunchOf (s)) Furthermore, BunchOf (s) is the 

smallest object satisfying this condition. In other words, BunchOf (s) must be part of 

any object that has all the elements of s as parts:  

∀y [∀x x∈ s ⇒PartOf (x, y)] ⇒PartOf (BunchOf (s), y)  
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Measurements 

In both scientific and commonsense theories of the world, objects have height, mass, 

cost, and so on. The values that we assign for these properties are called measures. 

Length(L1)=Inches(1.5)=Centimeters(3.81) 

Conversion between units is done by equating multiples of one unit to another: 

Centimeters(2.54 ×d)=Inches(d) 

Similar axioms can be written for pounds and kilograms, seconds and days, and dollars 

and cents. Measures can be used to describe objects as follows:  

Diameter (Basketball12)=Inches(9.5)  

ListPrice(Basketball12)=$(19)  

d∈ Days ⇒ Duration(d)=Hours(24)  

Time Intervals  

Event calculus opens us up to the possibility of talking about time, and time intervals. 

We will consider two kinds of time intervals: moments and extended intervals. The distinction 

is that only moments have zero duration:  

Partition({Moments,ExtendedIntervals}, Intervals )  

i∈Moments⇔Duration(i)=Seconds(0)  

The functions Begin and End pick out the earliest and latest moments in an interval, 

and the function Time delivers the point on the time scale for a moment.  

The function Duration gives the difference between the end time and the start time.  

Interval (i) ⇒Duration(i)=(Time(End(i)) − Time(Begin(i))) 

Time(Begin(AD1900))=Seconds(0)  

Time(Begin(AD2001))=Seconds(3187324800)  

Time(End(AD2001))=Seconds(3218860800) 

Duration(AD2001)=Seconds(31536000)  

Two intervals Meet if the end time of the first equals the start time of the second. The 

complete set of interval relations, as proposed by Allen (1983), is shown graphically in Figure 

12.2 and logically below:  

Meet(i,j) ⇔ End(i)=Begin(j)  

Before(i,j) ⇔ End(i) < Begin(j)  

After (j,i) ⇔ Before(i, j)  

During(i,j) ⇔ Begin(j) < Begin(i) < End(i) < End(j)  
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Overlap(i,j) ⇔ Begin(i) < Begin(j) < End(i) < End(j)  

Begins(i,j) ⇔ Begin(i) = Begin(j)  

Finishes(i,j) ⇔ End(i) = End(j)  

Equals(i,j) ⇔ Begin(i) = Begin(j) ∧ End(i) = End(j) 

 

Figure 3.14 Predicates on time intervals 

 

3.7 EVENTS  

Event calculus reifies fluents and events. The fluent At(Shankar, Berkeley) is an 

object that refers to the fact of Shankar being in Berkeley, but does not by itself say anything 

about whether it is true. To assert that a fluent is actually true at some point in time we use the 

predicate T, as in T(At(Shankar, Berkeley), t). Events are described as instances of event 

categories. The event E1 of Shankar flying from San Francisco to Washington, D.C. is 

described as E1 ∈Flyings∧ Flyer (E1, Shankar ) ∧ Origin(E1, SF) ∧ Destination (E1,DC) 

we can define an alternative three-argument version of the category of flying events and say 

E1 ∈Flyings(Shankar, SF,DC) We then use Happens(E1, i) to say that the event E1 took 

place over the time interval i, and we say the same thing in functional form with Extent(E1)=i. 

We represent time intervals by a (start, end) pair of times; that is, i = (t1, t2) is the time interval 

that starts at t1 and ends at t2. The complete set of predicates for one version of the event 

calculus is T(f, t) Fluent f is true at time t Happens(e, i) Event e happens over the time interval 

i Initiates(e, f, t) Event e causes fluent f to start to hold at time t Terminates(e, f, t) Event e 

causes fluent f to cease to hold at time t Clipped(f, i) Fluent f ceases to be true at some point 

during time interval i Restored (f, i) Fluent f becomes true sometime during time interval i We 

assume a distinguished event, Start, that describes the initial state by saying which fluents are 

initiated or terminated at the start time. We define T by saying that a fluent holds at a point in 

time if the fluent was initiated by an event at some time in the past and was not made false 

(clipped) by an intervening event. A fluent does not hold if it was terminated by an event and 

not made true (restored) by another event. Formally, the axioms are:  

Happens(e, (t1, t2)) ∧Initiates(e, f, t1) ∧￢Clipped(f, (t1, t)) ∧ t1 < t ⇒T(f, 

t)Happens(e, (t1, t2)) ∧ Terminates(e, f, t1)∧￢Restored (f, (t1, t)) ∧ t1 < t ⇒￢T(f, t) 
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where Clipped and Restored are defined by Clipped(f, (t1, t2)) ⇔∃ e, t, t3 Happens(e, 

(t, t3))∧ t1 ≤ t < t2 ∧ Terminates(e, f, t) Restored (f, (t1, t2)) ⇔∃ e, t, t3 Happens(e, (t, 

t3)) ∧ t1 ≤ t < t2 ∧ Initiates(e, f, t) 

3.8 MENTAL EVENTS AND MENTAL OBJECTS  

What we need is a model of the mental objects that are in someone’s head (or 

something’s knowledge base) and of the mental processes that manipulate those mental objects. 

The model does not have to be detailed. We do not have to be able to predict how many 

milliseconds it will take for a particular agent to make a deduction. We will be happy just to be 

able to conclude that mother knows whether or not she is sitting.  

We begin with the propositional attitudes that an agent can have toward mental objects: 

attitudes such as Believes, Knows, Wants, Intends, and Informs. The difficulty is that these 

attitudes do not behave like “normal” predicates.  

For example, suppose we try to assert that Lois knows that Superman can fly: Knows 

(Lois, CanFly(Superman)) One minor issue with this is that we normally think of 

CanFly(Superman) as a sentence, but here it appears as a term. That issue can be patched up 

just be reifying CanFly(Superman); making it a fluent. A more serious problem isthat, if it is 

true that Superman is Clark Kent, then we must conclude that Lois knows that Clark can fly: 

(Superman = Clark) ∧Knows(Lois, CanFly(Superman)) |= Knows(Lois, CanFly (Clark)) 

Modal logic is designed to address this problem. Regular logic is concerned with a single 

modality, the modality of truth, allowing us to express “P is true.” Modal logic includes special 

modal operators that take sentences (rather than terms) as arguments.  

For example, “A knows P” is represented with the notation KAP, where K is the modal 

operator for knowledge. It takes two arguments, an agent (written as the subscript) and a 

sentence. The syntax of modal logic is the same as first-order logic, except that sentences can 

also be formed with modal operators. In first-order logic a model contains a set of objects and 

an interpretation that maps each name to the appropriate object, relation, or function. In modal 

logic we want to be able to consider both the possibility that Superman’s secret identity is Clark 

and that it isn’t. Therefore, we will need a more complicated model, one that consists of a 

collection of possible worlds rather than just one true world. The worlds are connected in a 

graph by accessibility relations, one relation for each modal operator. We say that world w1 is 

accessible from world w0 with respect to the modal operator KA if everything in w1 is 

consistent with what A knows in w0, and we write this as Acc(KA,w0,w1). In diagrams such 

as Figure 12.4 we show accessibility as an arrow between possible worlds. In general, a 

knowledge atom KAP is true in world w if and only if P is true in every world accessible from 

w. The truth of more complex sentences is derived by recursive application of this rule and the 

normal rules of first-order logic. That means that modal logic can be used to reason about 

nested knowledge sentences: what one agent knows about another agent’s knowledge. For 

example, we can say that, even though Lois doesn’t know whether Superman’s secret identity 

is Clark Kent, she does know that Clark knows: KLois [KClark Identity(Superman, Clark ) 
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∨KClark￢Identity(Superman, Clark )] Figure 3.15 shows some possible worlds for this 

domain, with accessibility relations for Lois and Superman 

 

Figure 3.15 

 

In the TOP-LEFT diagram, it is common knowledge that Superman knows his own 

identity, and neither he nor Lois has seen the weather report. So in w0 the worlds w0 and w2 

are accessible to Superman; maybe rain is predicted, maybe not. For Lois all four worlds are 

accessible from each other; she doesn’t know anything about the report or if Clark is Superman. 

But she does know that Superman knows whether he is Clark, because in every world that is 

accessible to Lois, either Superman knows I, or he knows ￢I. Lois does not know which is the 

case, but either way she knows Superman knows. In the TOP-RIGHT diagram it is common 

knowledge that Lois has seen the weather report. So in w4 she knows rain is predicted and in 

w6 she knows rain is not predicted. Superman does not know the report, but he knows that Lois 

knows, because in every world that is accessible to him, either she knows R or she knows ￢

R. In the BOTTOM diagram we represent the scenario where it is common knowledge that 

Superman knows his identity, and Lois might or might not have seen the weather report. We 

represent this by combining the two top scenarios, and adding arrows to show that Superman 

does not know which scenario actually holds. Lois does know, so we don’t need to add any 

arrows for her. In w0 Superman still knows I but not R, and now he does not know whether 

Lois knows R. From what Superman knows, he might be in w0 or w2, in which case Lois does 

not know whether R is true, or he could be in w4, in which case she knows R, or w6, in which 

case she knows ￢R.  

3.9 REASONING SYSTEMS FOR CATEGORIES 



100 

 This section describes systems specially designed for organizing and reasoning with 

categories. There are two closely related families of systems: semantic networks provide 

graphical aids for visualizing a knowledge base and efficient algorithms for inferring properties 

of an object on the basis of its category membership; and description logics provide a formal 

language for constructing and combining category definitions and efficient algorithms for 

deciding subset and superset relationships between categories.  

3.10 SEMANTIC NETWORKS 

There are many variants of semantic networks, but all are capable of representing 

individual objects, categories of objects, and relations among objects. A typical graphical 

notation displays object or category names in ovals or boxes, and connects them with labeled 

links. For example, Figure 12.5 has a Member Of link between Mary and Female Persons, 

corresponding to the logical assertion Mary ∈FemalePersons ; similarly, the SisterOf link 

between Mary and John corresponds to the assertion SisterOf (Mary, John). We can connect 

categories using SubsetOf links, and so on. We know that persons have female persons as 

mothers, so can we draw a HasMother link from Persons to FemalePersons? The answer is no, 

because HasMother is a relation between a person and his or her mother, and categories do not 

have mothers. For this reason, we have used a special notation—the double-boxed link—in 

Figure 12.5. This link asserts that ∀x x∈ Persons ⇒ [∀ y HasMother (x, y) ⇒ y ∈FemalePersons 

] We might also want to assert that persons have two legs—that is, ∀x x∈ Persons ⇒ Legs(x, 

2) The semantic network notation makes it convenient to perform inheritance reasoning. For 

example, by virtue of being a person, Mary inherits the property of having two legs. Thus, to 

find out how many legs Mary has, the inheritance algorithm followsthe MemberOf link from 

Mary to the category she belongs to, and then follows SubsetOf links up the hierarchy until it 

finds a category for which there is a boxed Legs link—in this case, the Persons category. 

 

Figure 3.16 A semantic network with four objects (John, Mary, 1, 

and 2) and four categories. Relations are denoted by labeled links. 

 

Inheritance becomes complicated when an object can belong to more than one category 

or when a category can be a subset of more than one other category; this is called multiple 

inheritance. The drawback of semantic network notation, compared to first-order logic: the fact 
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that links between bubbles represent only binary relations. For example, the sentence 

Fly(Shankar, NewYork, NewDelhi, Yesterday) cannot be asserted directly in a semantic 

network. Nonetheless, we can obtain the effect of n-ary assertions by reifying the proposition 

itself as an event belonging to an appropriate event category. Figure 12.6 shows the semantic 

network structure for this particular event. Notice that the restriction to binary relations forces 

the creation of a rich ontology of reified concepts. One of the most important aspects of 

semantic networks is their ability to represent. 

 

Figure 3.17  A fragment of a semantic network showing the 

representation of the logical assertion Fly(Shankar, NewYork, 

NewDelhi, Yesterday) 

 

One of the most important aspects of semantic networks is their ability to represent 

default values for categories. Examining Figure 3.6 carefully, one notices that John has one 

leg, despite the fact that he is a person and all persons have two legs. In a strictly logical KB, 

this would be a contradiction, but in a semantic network, the assertion that all persons have two 

legs has only default status; that is, a person is assumed to have two legs unless this is 

contradicted by more specific information 

 

 We also include the negated goal  Criminal (West). The resolution proof is shown in 

Figure 3.18. 
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Figure 3.18  A resolution proof that West is a criminal. At each step, 

the literals that unify are in bold. 
 

 Notice the structure: single “spine” beginning with the goal clause, resolving against 

clauses from the knowledge base until the empty clause is generated. This is characteristic of 

resolution on Horn clause knowledge bases. In fact, the clauses along the main spine 

correspond exactly to the consecutive values of the goals variable in the backward-chaining 

algorithm of Figure. This is because we always choose to resolve with a clause whose positive 

literal unified with the left most literal of the “current” clause on the spine; this is exactly what 

happens in backward chaining. Thus, backward chaining is just a special case of resolution 

with a particular control strategy to decide which resolution to perform next. 

EXAMPLE 2 

 Our second example makes use of Skolemization and involves clauses that are not 

definite clauses. This results in a somewhat more complex proof structure. In English, the 

problem is a follows: 

 Everyone who love all animals is loved by someone. 

 Anyone who kills an animals is loved by no one. 

 Jack loves all animals. 

 Either Jack or Curiosity killed the cat, who is named Tuna. 

Did Curiosity kill the cat? First, we express the original sentences, some background 

knowledge, and the negated goal G in first-order logic: 

A.  x [ y Animal(y)  Loves(x,y)  [y Loves(y,x)] 

B.  x [ x Animal(z) ^ Kills (x,z)]   [ y Loves(y,x)] 

C.  x Animals(x) Loves(Jack, x) 

D. Kills (Jack, Tuna) V Kills (Curiosity, Tuna) 

E. Cat (Tuna) 

F.  x Cat(x)  Animal (x) 

G. Kills(Curiosity, Tuna) 
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Now we apply the conversion procedure to convert each sentence to CNF: 

A1. Animal(F(x)) v Loves (G(x),x) 

A2. Loves(x,F(x)) v Loves (G(x),x) 

B. Loves(y,x) v  Animal(z) V  Kills(x,z) 

C. Animal(x) v Loves(Jack, x) 

D. Kills(Jack, Tuna) v Kills (Curiosity, Tuna) 

E. Cat (Tuna) 

F. Cat(x) v Animal (x) 

G. Kills (Curiosity, Tuna) 

The resolution proof that Curiosity kills the cat is given in Figure. In English, the proof 

could be paraphrased as follows: 

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus 

Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because anyone 

who kills an animal is loved by no one, we know that no one loves Jack. On the other hand, 

Jack loves all animals, so someone loves him; so we have a contradiction. Therefore Curiosity 

killed the cat.  

 

Figure 3.19 A resolution proof that Curiosity killed that Cat. Notice then use 

of factoring in the derivation of the clause Loves(G(Jack), Jack). Notice also 

in the upper right, the unification of Loves(x,F(x)) and Loves(Jack,x) can 

only succeed after the variables have been standardized apart 

 

 The proof answers the question “Did Curiosity kill the cat?” but often we want to pose 

more general questions, such as “Who killed the cat?” Resolution can do this, but it takes a 

little more work to obtain the answer. The goal is w Kills (w, Tuna), which, when negated 

become Kills (w, Tuna) in CNF, Repeating the proof in Figure with the new negated goal, 

we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the steps. So, 

in this case, finding out who killed the cat is just a matter of keeping track of the bindings for 

the query variables in the proof. 

EXAMPLE 3 

1. All people who are graduating are happy. 



104 

2. All happy people smile. 

3. Someone is graduating. 

4. Conclusion: Is someone smiling? 

Solution 

Convert the sentences into predicate Logic 

1. x graduating(x) -> happy(x) 

2. x happy(x) -> smile(x) 

3. x graduating(x) 

4. x smile(x) 

Convert to clausal form 

(i) Eliminate the → sign 

1. x – graduating(x) vhappy(x) 

2. x – happy(x) vsmile(x) 

3. x graduating(x) 

4. -x smile(x) 

(ii) Reduce the scope of negation 

1. x – graduating(x) vhappy(x) 

2. x – happy(x) vsmile(x) 

3. x graduating(x) 

4. x smile(x) 

(iii) Standardize variable apart 

1. x – graduating(x) vhappy(x) 

2. x – happy(y) vsmile(y) 

3. x graduating(z) 

4. x smile(w) 

(iv) Move all quantifiers to the left 

1. x graduating(x) vhappy(x) 

2. x happy(y) vsmile(y) 

3. x graduating(z) 

4. w smile(w) 

(v) Eliminate  

1. x graduating(x) vhappy(x) 

2. x happy(y) vsmile(y) 
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3. graduating(name1) 

4. w smile(w) 

(vi) Eliminate 

1. graduating(x) vhappy(x) 

2. happy(y) vsmile(y) 

3. graduating(name1) 

4. smile(w) 

(vii) Convert to conjunct of disjuncts form 

(viii) Make each conjunct a separate clause. 

(ix) Standardize variables apart again. 

 

Figure 3.20 Standardize variables 

 

 Thus, we proved someone is smiling. 

EXAMPLE 4 

 Explain the unification algorithm used for reasoning under predicate logic with an 

example. Consider the following facts 

 a. Team India 

 b. Team Australia 

 c. Final match between India and Australia 

d. India scored 350 runs, Australia scored 350 runs, India lost 5 wickets, Australia 

lost 7 wickets. 

f. If the scores are same the team which lost minimum wickets wins the match. 

 Represent the facts in predicate, convert to clause form and prove by resolution “India 

wins the match”. 
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Solution 

Convert into predicate Logic 

(a) team(India) 

(b) team(Australia) 

(c) team(India) ^ team(Australia) → final_match(India,Australia) 

(d) score(India,350) ^ score(Australia,350) ^ wicket(India,5) ^ wicket(Australia,7) 

(e) x team(x) ^ wins(x) → score(x,mat_runs) 

(f) xy score(x,equal(y)) ^ wicket(x,min) ^ final_match(x,y) → win(x) 

Convert to clausal form 

(i) Eliminate the → sign 

(a) team(India) 

(b) team(Australia) 

(c) (team(India) ^ team(Australia) v final_match(India,Australia) 

(d) score(India,350) ^ score(Australia,350) ^ wicket(India,5) ^ wicket(Australia,7) 

(e) x (team(x) ^ wins(x)) vscore(x,max_runs)) 

(f) xy (score(x,equal(y)) ^ wicket(x,min) ^final_match(x,y)) vwin(x) 

(ii) Reduce the scope of negation 

(a) team(India) 

(b) team(Australia) 

(c) team(India) v team(Australia) v final_match(India, Australia) 

(d) score(India,350) ^ score(Australia,350) ^ wicket(India,5) ^ wicket(Australia,7) 

(e) x team(x) v wins(x) vscore(x,max_runs)) 

(f) xy (score(x,equal(y)) v  wicket(x,min_wicket) vfinal_match(x,y)) vwin(x) 

(iii) Standardize variables apart 

(iv) Move all quantifiers to the left 

(v) Eliminate  

(a) team(India) 

(b) team(Australia) 

(c) team(India) v team(Australia) v final_match (India,Australia) 

(d) score(India,350) ^ score(Australia,350) ^ wicket(India,5) ^ wicket(Australia,7) 

(e) team(x) v wins(x) vscore(x, max_runs)) 

(f) score(x,equal(y)) vwicket(x,min_wicket) v-final_match(x,y)) vwin(x) 

(vi) Eliminate 
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(vii) Convert to conjunct of disjuncts form. 

(viii) Make each conjunct a separate clause. 

(a) team(India) 

(b) team(Australia) 

(c) team(India) v team(Australia) v final_match (India,Australia) 

(d) score(India,350) 

 Score(Australia,350) 

 Wicket(India,5) 

 Wicket(Austrialia,7) 

(e) team(x) v wins(x) vscore(x,max_runs)) 

(f) score(x,equal(y)) vwicket(x,min_wicket) vfinal_match(x,y)) vwin(x) 

(ix) Standardize variables apart again 

To prove:win(India) 

Disprove:win(India) 

 

Figure 3.21 Standardize variables  

 

Thus, proved India wins match. 

EXAMPLE 5 

Problem 3 

 Consider the following facts and represent them in predicate form: 

 F1. There are 500 employees in ABC company. 

 F2. Employees earning more than Rs. 5000 per tax. 

 F3. John is a manger in ABC company. 

 F4. Manger earns Rs. 10,000. 
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 Convert the facts in predicate form to clauses and then prove by resolution: “John pays 

tax”. 

Solution 

Convert into predicate Logic 

1. company(ABC) ^employee(500,ABC) 

2. x company(ABC) ^employee(x,ABC) ^ earns(x,5000)→pays(x,tax) 

3. manager(John,ABC) 

4. x manager(x, ABC)→earns(x,10000) 

Convert to clausal form 

(i) Eliminate the → sign 

1. company(ABC) ^employee(500,ABC) 

2. x(company(ABC) ^employee(x,ABC) ^ earns(x,5000)) v pays(x,tax) 

3. manager(John,ABC) 

4. x manager(x, ABC) v earns(x,10000) 

(ii) Reduce the scope of negation 

1. company(ABC) ^employee(500,ABC) 

2. x company(ABC) v employee(x,ABC) vearns(x,5000) v pays(x,tax) 

3. manager(John,ABC) 

4. x manager(x, ABC) v earns(x,10000) 

(iii) Standardize variables apart 

1. company(ABC) ^employee(500,ABC) 

2. x company(ABC) v employee(x,ABC) vearns(x,5000) v pays(x,tax) 

3. manager(John,ABC) 

4. x manager(x, ABC) v earns(x,10000) 

(iv) Move all quantifiers to the left  

(v) Eliminate  

1. company(ABC) ^employee(500,ABC) 

2. company(ABC) v employee(x,ABC) vearns(x,5000) v pays(x,tax) 

3. manager(John,ABC) 

4. manager(x, ABC) v earns(x,10000) 

(vi) Eliminate 

(vii) Convert to conjunct of disjuncts form 
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(viii) Make each conjunct a separate clause. 

1. (a) company(ABC) 

 (b) employee(500,ABC) 

2. company(ABC) v employee(x,ABC) vearns(x,5000) v pays(x,tax) 

3. manager(John,ABC) 

4. manager(x, ABC) v earns(x,10000) 

(ix) Standardize variables apart again. 

Prove:pays(John,tax) 

Disprove:pays(John,tax) 

 

Figure 3.22 Standardize variables  

  

Thus, proved john pays tax. 

 

EXAMPLE 6 & EXAMPLE 7 

Problem 4 

 If a perfect square is divisible by a prime p then it is also divisible by square of p. 

 Every perfect square is divisible by some prime. 

 36 is a perfect square. 

Convert into predicate Logic 

1. xyperfect_sq(x) ^ prime(h) ^divideds(x,y) → divides(x,square(y)) 
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2. xy perfect)sq(x) ^prime(y) ^divides(x,y) 

3. perfect_sq(36) 

Problem 5 

1. Marcus was a a man 

  man(Marcus) 

2. Marcus was a Pompeian 

  Pompeian(Marcus) 

3. All Pompeians were Romans 

  x (Pompeians(x) → Roman(x)) 

4. Caesar was ruler 

  Ruler(Caesar) 

5. All Romans were either loyal to Caesar or hated him. 

 x (Roman(x) → loyalto(x,Caesar) v hate(x,Caesar)) 

6. Everyone is loyal to someone 

 x y (person(x) → person(y) ^ loyalto(x,y)) 

7. People only try to assassinate rulers they are not loyal to 

 x y (person(x) ^ ruler(y)^ tryassassinate(x,y) → -loyalto(x,y)) 

8. Marcus tried to assassinate Caesar 

 tryassassinate(Marcus, Caesar) 

9. All men are persons 

 x (max(x) → person(x)) 

Example 

Trace the operation of the unification algorithm on each of the following pairs of literals: 

i)  f(Marcus) and f(Caesar) 

ii)  f(x) and f(g(y)) 

iii)  f(marcus,g(x,y)) and f(x,g(Caesar, Marcus)) 

In propositional logic it is easy to determine that two literals can not both be true at the 

same time. Simply look for L and ~L. In predicate logic, this matching process is more 

complicated, since bindings of variables must be considered. 

For example man (john) and man(john) is a contradiction while man (john) and 

man(Himalayas) is not. Thus in order to determine contradictions we need a matching 

procedure that compares two literals and discovers whether there exist a set of substitutions 

that makes them identical. There is a recursive procedure that does this matching. It is called 

Unification algorithm. 
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In Unification algorithm each literal is represented as a list, where first element is the 

name of a predicate and the remaining elements are arguments. The argument may be a single 

element (atom) or may be another list. For example we can have literals as 

(tryassassinate Marcus Caesar) 

(tryassassinate Marcus (ruler of Rome)) 

To unify two literals, first check if their first elements re same. If so proceed. Otherwise 

they can not be unified. For example the literals 

(try assassinate Marcus Caesar) 

(hate Marcus Caesar) 

Can not be Unfied. The unification algorithm recursively matches pairs of elements, 

one pair at a time. The matching rules are : 

i)  Different constants, functions or predicates can not match, whereas identical 

ones can. 

ii)  A variable can match another variable, any constant or a function or predicate 

expression, subject to the condition that the function or [predicate expression 

must not contain any instance of the variable being matched (otherwise it will 

lead to infinite recursion). 

iii)  The substitution must be consistent. Substituting y for x now and then z for x 

later is inconsistent (a substitution y for x written as y/x). 

The Unification algorithm is listed below as a procedure UNIFY (L1, L2). It returns a 

list representing the composition of the substitutions that were performed during the match. An 

empty list NIL indicates that a match was found without any substitutions. If the list contains 

a single value F, it indicates that the unification procedure failed. 

UNIFY (L1, L2) 

1. if L1 or L2 is an atom part of same thing do 

(a) if L1 or L2 are identical then return NIL 

(b) else if L1 is a variable then do 

(i) if L1 occurs in L2 then return F else return (L2/L1) 

© else if L2 is a variable then do 

(i) if L2 occurs in L1 then return F else return (L1/L2) 

else return F. 

2. If length (L!) is not equal to length (L2) then return F. 

3. Set SUBST to NIL 

(at the end of this procedure, SUBST will contain all the substitutions used to unify L1 and 

L2). 
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4. For I = 1 to number of elements in L1 do 

i) call UNIFY with the ith element of L1 and I’th element of L2, putting the result in S 

ii) if S = F then return F 

iii) if S is not equal to NIL then do 

(A) apply S to the remainder of both L1 and L2 

(B) SUBST := APPEND (S, SUBST) return SUBST. 

Consider a knowledge base containing just two sentences: P(a) and P(b). Does this 

knowledge base entail ∀ x P(x)? Explain your answer in terms of models. 

The knowledge base does not entail ∀x P(x). To show this, we must give a model 

where P(a) and P(b) but ∀x P(x) is false. Consider any model with three domain elements, 

where a and b refer to the first two elements and the relation referred to by P holds only for 

those two elements. 

Is the sentence ∃ x, y x = y valid? Explain 

The sentence ∃ x, y x=y is valid. A sentence is valid if it is true in every model. An 

existentially quantified sentence is true in a model if it holds under any extended interpretation 

in which its variables are assigned to domain elements. According to the standard semantics of 

FOL as given in the chapter, every model contains at least one domain element, hence, for any 

model, there is an extended interpretation in which x and y are assigned to the first domain 

element. In such an interpretation, x=y is true. 

What is ontological commitment (what exists in the world) of first order logic? 

Represent the sentence “Brothers are siblings” in first order logic?  

Ontological commitment means what assumptions language makes about the nature if 

reality. Representation of “Brothers are siblings” in first order logic is  x, y [Brother (x, y)  

Siblings (x, y)]  

Differentiate between propositional and first order predicate logic?  

Following are the comparative differences versus first order logic and propositional 

logic.  

1) Propositional logic is less expressive and do not reflect individual object`s 

properties explicitly. First order logic is more expressive and can represent 

individual object along with all its properties. 

2)  Propositional logic cannot represent relationship among objects whereas first 

order logic can represent relationship.  

3)  Propositional logic does not consider generalization of objects where as first 

order logic handles generalization.  

4)  Propositional logic includes sentence letters (A, B, and C) and logical 

connectives, but not quantifier. First order logic has the same connectives as 
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propositional logic, but it also has variables for individual objects, quantifier, 

symbols for functions and symbols for relations. 

Represent the following sentence in predicate form:  

“All the children like sweets”  

x child(x)  sweet(y)  likes (x,y). 

Illustrate the use of first order logic to represent knowledge. The best way to find usage 

of First order logic is through examples. The examples can be taken from some simple domains. 

In knowledge representation, a domain is just some part of the world about which we wish to 

express some knowledge. Assertions and queries in first-order logic Sentences are added to a 

knowledge base using TELL, exactly as in propositional logic. Such sentences are called 

assertions. For example, we can assert that John is a king and that kings are persons: Where 

KB is knowledge base. TELL(KB, x King(x) => Person(x)). We can ask questions of the 

knowledge base using AS K. For example, returns true. Questions asked using ASK are called 

queries or goals ASK(KB, Person(John)) Will return true. (ASK KBto find whether Jon is a 

king) ASK (KB, x person(x)) The kinship domain The first example we consider is the domain 

of family relationships, or kinship. This domain includes facts such as "Elizabeth is the mother 

of Charles" and "Charles is the father of William7' and rules such as "One's grandmother is the 

mother of one's parent." Clearly, the objects in our domain are people. We will have two unary 

predicates, Male and Female. Kinship relations-parenthood, brotherhood, marriage, and so on-

will be represented by binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Son, 

Spouse, Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle. We will use functions 

for Mother and Father. 

What are the characteristics of multi agent systems?  

Each agent has just incomplete information and is restricted in is capabilities.  

The system control is distributed. Data is decentralized. Computation is asynchronous  

Multi agent environments are typically open ad have no centralized designer. Multi agent 

environments provide an infrastructure specifying communication and interaction  

protocols. Multi agent environments have agents that are autonomous and distributed, and may 

be self interested or cooperative. 
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UNIT 4 

SOFTWARE AGENTS  

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – 

Argumentation among Agents – Trust and Reputation in Multi-agent systems. 

4.1 DEFINITION  

Agent architectures, like software architectures, are formally a description of the 

elements from which a system is built and the manner in which they communicate. Further, 

these elements can be defined from patterns with specific constraints. [Shaw/Garlin 1996]  

1.  A number of common architectures exist that go by the names pipe-and filter or 

layered architecture.  

2.  these define the interconnections between components.  

3.  Pipe-and-Filter defines a model where data is moved through a set of one or 

more objects that perform a transformation.  

4.  Layered simply means that the system is comprised of a set of layers that 

provide a specific set of logical functionality and that connectivity is commonly 

restricted to the layers contiguous to one another.  

4.2 TYPES OF ARCHITECTURES  

Based on the goals of the agent application, a variety of agent architectures exist to 

help. This section will introduce some of the major architecture types and applications for 

which they can be used.  

1. Reactive architectures 

2. Deliberative architectures  

3. Blackboard architectures  

4. Belief-desire-intention (BDI) architecture  

5. Hybrid architectures  

6. Mobile architectures  

1. REACTIVE ARCHITECTURES  

1. A reactive architecture is the simplest architecture for agents.  

2.  In this architecture, agent behaviors are simply a mapping between stimulus and 

response.  

3.  The agent has no decision-making skills, only reactions to the environment in which it 

exists.  
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4.  The agent simply reads the environment and then maps the state of the environment to 

one or more actions. Given the environment, more than one action may be appropriate, 

and therefore the agent must choose.  

5.  The advantage of reactive architectures is that they are extremely fast.  

6.  This kind of architecture can be implemented easily in hardware, or fast in software 

lookup.  

7.  The disadvantage of reactive architectures is that they apply only to simple 

environments.  

8.  Sequences of actions require the presence of state, which is not encoded into the 

mapping function.  

2. DELIBERATIVE ARCHITECTURES  

1. A deliberative architecture, as the name implies, is one that includes some deliberation 

over the action to perform given the current set of inputs.  

2.  Instead of mapping the sensors directly to the actuators, the deliberative architecture 

considers the sensors, state, prior results of given actions, and other information in order 

to select the best action to perform.  

3. The mechanism for action selection as is undefined. This is because it could be a variety 

of mechanisms including a production system, neural network, or  

any other intelligent algorithm.  

4.  The advantage of the deliberative architecture is that it can be used to solve much more 

complex problems than the reactive architecture.  

5.  It can perform planning, and perform sequences of actions to achieve a goal.  

6.  The disadvantage is that it is slower than the reactive architecture due to the deliberation 

for the action to select. 

 

Figure 4.1 Reactive architecture defines a simple agent 
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Figure 4.2 A deliberative agent architecture considers its actions 

 

3. BLACKBOARD ARCHITECTURES  

1.  The blackboard architecture is a very common architecture that is also very interesting.  

2.  The first blackboard architecture was HEARSAY-II, which was a speech understanding 

system. This architecture operates around a global work area call the blackboard.  

3.  The blackboard is a common work area for a number of agents that work cooperatively 

to solve a given problem.  

4.  The blackboard therefore contains information about the environment, but also 

intermediate work results by the cooperative agents. 

5.  In this example, two separate agents are used to sample the environment through the 

available sensors (the sensor agent) and also through the available actuators (action 

agent).  

6.  The blackboard contains the current state of the environment that is constantly updated 

by the sensor agent, and when an action can be performed (as specified in the 

blackboard), the action agent translates this action into control of the actuators.  

7.  The control of the agent system is provided by one or more reasoning agents. 

8.  These agents work together to achieve the goals, which would also be contained in the 

blackboard.  

9.  In this example, the first reasoning agent could implement the goal definition behaviors, 

where the second reasoning agent could implement the planning portion (to translate 

goals into sequences of actions).  

10.  Since the blackboard is a common work area, coordination must be provided such that 

agents don’t step over one another.  
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11.  For this reason, agents are scheduled based on their need. For example, agents can 

monitor the blackboard, and as information is added, they can request the ability to 

operate.  

12.  The scheduler can then identify which agents desire to operate on the blackboard, and 

then invoke them accordingly.  

13.  The blackboard architecture, with its globally available work area, is easily 

implemented with a multi-threading system.  

14.  Each agent becomes one or more system threads. From this perspective, the blackboard 

architecture is very common for agent and non-agent systems.  

 

Figure 4.3 The blackboard architecture supports multi-agent problem solving 

 

4. BELIEF-DESIRE-INTENTION (BDI) ARCHITECTURE  

1.  BDI, which stands for Belief-Desire-Intention, is an architecture that follows the theory 

of human reasoning as defined by Michael Bratman.  

2.  Belief represents the view of the world by the agent (what it believes to be the state of 

the environment in which it exists). Desires are the goals that define the motivation of 

the agent (what it wants to achieve).  

3.  The agent may have numerous desires, which must be consistent. Finally, Intentions 

specify that the agent uses the Beliefs and Desires in order to choose one or more actions 

in order to meet the desires. 

4.  As we described above, the BDI architecture defines the basic architecture of any 

deliberative agent. It stores a representation of the state of the environment (beliefs), 

maintains a set of goals (desires), and finally, an intentional element that maps desires 

to beliefs (to provide one or more actions that modify the state of the environment based 

on the agent’s needs).  
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Figure 4.4 The BDI architecture desires to model mental attributes 

 

5. HYBRID ARCHITECTURES  

1.  As is the case in traditional software architecture, most architectures are hybrids.  

2.  For example, the architecture of a network stack is made up of a pipe-and-filter 

architecture and a layered architecture.  

3.  This same stack also shares some elements of a blackboard architecture, as there are 

global elements that are visible and used by each component of the architecture.  

4.  The same is true for agent architectures. Based on the needs of the agent system, 

different architectural elements can be chosen to meet those needs.  

6. MOBILE ARCHITECTURES  

1. The final architectural pattern that we’l discuss is the mobile agent architecture. 

2.  This architectural pattern introduces the ability for agents to migrate themselves 

between hosts. The agent architecture includes the mobility element, which allows an 

agent to migrate from one host to another.  

3.  An agent can migrate to any host that implements the mobile framework.  

4.  The mobile agent framework provides a protocol that permits communication between 

hosts for agent migration.  

5.  This framework also requires some kind of authentication and security, to avoid a 

mobile agent framework from becoming a conduit for viruses. Also implicit in the 

mobile agent framework is a means for discovery.  
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6.  For example, which hosts are available for migration, and what services do they 

provide? Communication is also implicit, as agents can communicate with one another 

on a host, or across hosts in preparation for migration.  

7.  The mobile agent architecture is advantageous as it supports the development of 

intelligent distributed systems. But a distributed system that is dynamic, and whose 

configuration and loading is defined by the agents themselves.  

 

Figure 4.5 The mobile agent framework supports agent mobility 

 

7. ARCHITECTURE DESCRIPTIONS  

1.  Subsumption Architecture (Reactive Architecture)  

2.  Behavior Networks (Reactive Architecture)  

3.  ATLANTIS (Deliberative Architecture)  

4.  Homer (Deliberative Arch)  

5.  BB1 (Blackboard)  

6.  Open Agent Architecture (Blackboard)  

7.  Procedural Reasoning System (BDI)  

8.  Aglets (Mobile)  

9.  Messengers (Mobile)  

10.  Soar (Hybrid)  

➢ SUBSUMPTION ARCHITECTURE (REACTIVE ARCHITECTURE)  

1.  The Subsumption architecture, originated by Rodney Brooks in the late 1980s, was 

created out of research in behavior-based robotics.  

2.  The fundamental idea behind subsumption is that intelligent behavior can be created 

through a collection of simple behavior modules.  
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3.  These behavior modules are collected into layers. At the bottom are behaviors that are 

reflexive in nature, and at the top, behaviors that are more complex. Consider the 

abstract model shown in Figure.  

4.  At the bottom (level 0) exist the reflexive behaviors (such as obstacle avoidance). If 

these behaviors are required, then level 0 consumes the inputs and provides an action 

at the output. But no obstacles exist, so the next layer up is permitted to subsume 

control.  

5.  At each level, a set of behaviors with different goals compete for control based on the 

state of the environment.  

6.  To support this capability levels can be inhibited (in other words, their outputs are 

disabled). Levels can also be suppressed such that sensor inputs are routed to higher 

layers. As shown in Figure.   

7.  Subsumption is a parallel and distributed architecture for managing sensors and 

actuators. The basic premise is that we begin with a simple set of behaviors, and once 

we’ve succeeded there, we extend with additional levels and higher- level behaviors.  

8.  For example, we begin with obstacle avoidance and then extend for object seeking. 

From this perspective, the architecture takes a more evolutionary design approach.  

9.  Subsumption does have its problems. It is simple, but it turns out not to be extremely 

extensible. As new layers are added, the layers tend to interfere with one another, and 

then the problem becomes how to layer the behaviors such that each has the opportunity 

to control when the time is right.  

10.  Subsumption is also reactive in nature, meaning that in the end, the architecture still 

simply maps inputs to behaviors (no planning occurs, for example). What subsumption 

does provide is a means to choose which behavior for a given environment. 

 

 

Figure 4.6 Architectural view of the subsumption architecture 
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➢ BEHAVIOR NETWORKS (REACTIVE ARCHITECTURE)  

1.  Behavior networks, created by Pattie Maes in the late 1980s, is another reactive 

architecture that is distributed in nature. Behavior networks attempt to answer the 

question, which action is best suited for a given situation.  

2.  As the name implies, behavior networks are networks of behaviors that include 

activation links and inhibition links.  

3.  An example behavior network for a game agent is shown in Figure. As shown in the 

legend, behaviors are rectangles and define the actions that the agent may take (attack, 

explore, reload, etc.).  

4.  The ovals specify the preconditions for actions to be selected, which are inputs from 

the environment.  

5.  Preconditions connect to behaviors through activation links (they promote the behavior 

to be performed) or inhibition links (that inhibit the behavior from being performed).  

6.  The environment is sampled, and then the behavior for the agent is selected based on 

the current state of the environment. The first thing to note is the activation and 

inhibition links. For example, when the agent’s health is low, attack and exploration are 

inhibited, leaving the agent to find the nearest shelter. Also, while exploring, the agent 

may come across medkits or ammunition.  

7.  If a medkit or ammunition is found, it’s used. Maes’ algorithm referred to competence 

modules, which included preconditions (that must be fulfilled before the module can 

activate), actions to be performed, as well as a level of activation.  

8.  The activation level is a threshold that is used to determine when a competence module 

may activate.  

9.  The algorithm also includes decay, such that activiations dissipate over time. Like the 

subsumption architecture, behavior networks are instances of Behavior-Based Systems 

(BBS). The primitive actions produced by these systems are all behaviors, based on the 

state of the environment.  

10. Behavior networks are not without problems. Being reactive, the architecture does not 

support planning or higher- level behaviors. The architecture can also suffer when 

behaviors are highly inter-dependent. With many competing goals, the behavior 

modules can grow dramatically in order to realize the intended behaviors. But for 

simpler architecture, such as the FPS game agent in Figure 4.7, this algorithm is ideal. 
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Figure 4.7 Behavior network for a simple game agent 

 

➢ ATLANTIS (Deliberative Architecture)  

1.  The goal of ATLANTIS (A Three-Layer Architecture for Navigating Through Intricate 

Situations), was to create a robot that could navigate through dynamic and imperfect  

environments in pursuit of explicitly stated high-level goals.  

2.  ATLANTIS was to prove that a goal-oriented robot could be built from a hybrid 

architecture of lower-level reactive behaviors and higher- level deliberative behaviors.  

 

Figure 4.8 ATLANTIS Architecture 

 



124 

3.  Where the subsumption architecture allows layers to subsume control, ATLANTIS 

operates on the assumption that these behaviors are not exclusive of one another. The 

lowest layer can operate in a reactive fashion to the immediate needs of the 

environment, while the uppermost layer can support planning and more goal-oriented 

behaviors.  

4.  In ATLANTIS, control is performed from the bottom- up. At the lowest level (the 

control layer) are the reactive behaviors.  

5.  These primitive level actions are capable of being executed first, based on the state of 

the environment. At the next layer is the sequencing layer. This layer is responsible for 

executing plans created by the deliberative layer.  

6.  The deliberative layer maintains an internal model of the environment and creates plans 

to satisfy goals.  

7.  The sequencing layer may or may not complete the plan, based on the state of the 

environment. This leaves the deliberation layer to perform the computationally 

expensive tasks. This is another place that the architecture is a hybrid.  

8.  The lower- level behavior-based methods (in the controller layer) are integrated with 

higher- level classical AI mechanisms (in the deliberative layer). Interestingly, the 

deliberative layer does not control the sequencing layer, but instead simply advises on 

sequences of actions that it can perform.  

9.  The advantage of this architecture is that the low- level reactive layer and higher- level  

intentional layers are asynchronous. This means that while deliberative plans are under  

construction, the agent is not susceptible to the dynamic environment. This is because 

even though planning can take time at the deliberative layer, the controller can deal 

with random events in the environment.  

➢ HOMER (DELIBERATIVE ARCH)  

1.  Homer is another interesting deliberative architecture that is both modular and 

integrated. Homer was created by Vere and Bickmore in 1990 as a deliberative 

architecture with some very distinct differences to other architectures.  

2.  At the core of the Homer architecture is a memory that is divided into two parts. The 

first part contains general knowledge (such as knowledge about the environment). The 

second part is called episodic knowledge, which is used to record experiences in the 

environment (perceptions and actions taken).  

3.  The natural language processor accepts human input via a keyboard, and parses and  

responds using a sentence generator. The temporal planner creates dynamic plans to 

satisfy predefined goals, and is capable of replanning if the environment requires.  
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4.  The architecture also includes a plan executor (or interpreter), which is used to execute 

the plan at the actuators. The architecture also included a variety of monitor processes. 

The basic idea behind Homer was an architecture for general intelligence.  

5.  The keyboard would allow regular English language input, and a terminal would 

display generated English language sentences. The user could therefore communicate 

with Homer to specify goals and receive feedback via the terminal.  

6.  Homer could log perceptions of the world, with timestamps, to allow dialogue with the 

user and rational answers to questions. Reflective (monitor) processes allow Homer to 

add or remove knowledge from the episodic memory.  

7.  Homer is an interesting architecture implementing a number of interesting ideas, from  

natural language processing to planning and reasoning. One issue found in Homer is 

that when the episodic memory grows large, it tends to slow down the overall operation 

of the agent.  

 

Figure 4.9  Homer Architecture  

 

➢ BB1 (BLACKBOARD)  

1.  BB1 is a domain- independent blackboard architecture for AI systems created by 

Barbara Hayes- Roth. The architecture supports control over problem solving as well 

as explaining its actions. The architecture is also able to learn new domain knowledge.  
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2.  BB1 includes two blackboards; a domain blackboard which acts as the global database 

and a control blackboard, which is used for generating a solution to the given control 

problem.  

3.  The key behind BB1 is its ability to incrementally plan. Instead of defining a complete 

plan for a given goal, and then executing that plan, BB1 dynamically develops the plan 

and adapts to the changes in the environment. This is key for dynamic environments, 

where unanticipated changes can lead to brittle plans that eventually fail. 

➢ PROCEDURAL REASONING SYSTEM (BDI)  

1.  The Procedural Reasoning System (PRS) is a general-purpose architecture that’s ideal 

for reasoning environments where actions can be defined by predetermined procedures 

(action sequences).  

2.  PRS is also a BDI architecture, mimicking the theory on human reasoning. PRS 

integrates both reactive and goal-directed deliberative processing in a distributed 

architecture.  

3.  The architecture is able to build a world-model of the environment (beliefs) through 

interacting with environment sensors.  

4.  Actions can also be taken through an intentions module. At the core is an interpreter (or  

reasoner) which selects a goal to meet (given the current set of beliefs) and then 

retrieves a plan to execute to achieve that goal. PRS iteratively tests the assumptions of 

the plan during its execution. This means that it can operate in dynamic environments 

where classical planners are doomed to fail.  

5.  Plans in PRS (also called knowledge areas) are predefined for the actions that are 

possible in the environment. This simplifies the architecture because it isn’t required to 

generate plans, only select them based on the environment and the goals that must be 

met. 

6.  While planning is more about selection than search or generation, the interpreter 

ensures that changes to the environment do not result in inconsistencies in the plan. 

Instead, a new plan is selected to achieve the specific goals.  

7.  PRS is a useful architecture when all necessary operations can be predefined. It’s also 

very efficient due to lack of plan generation. This makes PRS an ideal agent architecture 

for building agents such as those to control mobile robots.  

➢ AGLETS (MOBILE)  

1.  Aglets is a mobile agent framework designed by IBM Tokyo in the 1990s. Aglets is 

based on the Java programming language, as it is well suited for a mobile agents 

framework. First, the applications are portable to any system (both homogeneous and 
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heterogeneous) that is capable of running a Java Virtual Machine (JVM). Second, a 

JVM is an ideal platform for migration services.  

2.  Java supports serialization, which is the aggregation of a Java application’s program 

and data into a single object that is restart able.  

3.  In this case, the Java application is restarted on a new JVM. Java also provides a secure  

environment (sandbox) to ensure that a mobile agent framework doesn’t become a virus  

distribution system. The Aglets framework is shown in Figure 4.9. At the bottom of the 

framework is the JVM (the virtual machine that interprets the Java byte codes). The 

agent runtime environment and mobility protocol are next. The mobility protocol, 

called Aglet Transport Protocol (or ATP), provides the means to serialize agents and 

then transport them to a host previously defined by the agent.  

4.  The agent API is at the top of the stack, which in usual Java fashion, provides a number 

of API classes that focus on agent operation. Finally, there are the various agents that 

operate on the framework.  

5.  The agent API and runtime environment provide a number of services that are central 

to a mobile agent framework. Some of the more important functions are agent 

management, communication, and security. Agents must be able to register themselves 

on a given host to enable communication from outside agents.  

6.  In order to support communication, security features must be implemented to ensure 

that the agent has the authority to execute on the framework.  

7.  Aglets provides a number of necessary characteristics for a mobile agent framework, 

including mobility, communication, security, and confidentiality. Aglets provide weak 

migration, in that the agents can only migrate at arbitrary points within the code (such 

as with the dispatch method).  

➢ MESSENGERS (MOBILE) 

1.  Messengers is a runtime environment that provides a form of process migration (mobile  

agency).  

2.  One distinct strength of the messengers environment is that it supports strong migration, 

or the ability to migrate at arbitrary points within the mobile application.  

3.  The messengers environment provides the hop statement which defines when and 

where to migrate to a new destination.  

4.  After migration is complete, the messengers agent restarts in the application at the point 

after the previous hop statement. The end result is that the application moves to the 

data, rather than using a messaging protocol to move the data to the agent.  
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5.  There are obvious advantages to this when the data set is large and the migration links 

are slow. The messengers model provides what the authors call Navigational 

Programming, and also Distributed Sequential Computing (DSC).  

6.  What makes these concepts interesting is that they support the common model of 

programming that is identical to the traditional flow of sequential programs. This makes 

them easier to develop and understand.  

7.  Let’s now look at an example of DSC using the messengers environment. Listing 11.5 

provides a simple program. Consider an application where on a series of hosts, we 

manipulate large matrices which are held in their memory.  

➢ SOAR (HYBRID)  

1.  Soar, which originally was an acronym for State-Operator-And-Result, is a symbolic 

cognitive architecture.  

2.  Soar provides a model of cognition along with an implementation of that model for 

building general-purpose AI systems.  

3.  The idea behind Soar is from Newell’s unified theories of cognition. Soar is one of the 

most widely used architectures, from research into aspects of human behavior to the 

design of game agents for first person- shooter games.  

4.  The goal of the Soar architecture is to build systems that embody general intelligence. 

While Soar includes many elements that support this goal (for example, representing 

knowledge using procedural, episodic, and declarative forms), but Soar lacks some 

important aspects. These include episodic memories and also a model for emotion. 

Soar’s underlying problem-solving mechanism is based on a production system (expert 

system).  

5.  Behavior is encoded in rules similar to the if-then form. Solving problems in Soar can 

be most simply described as problem space search (to a goal node). If this model of 

problem solving fails, other methods are used, such as hill climbing.  

6.  When a solution is found, Soar uses a method called chunking to learn a new rule based 

on this discovery. If the agent encounters the problem again, it can use the rule to select 

the action to take instead of performing problem solving again.  

4.3 AGENT COMMUNICATION 

In the domain of multi-agent systems, communication is an important characteristic to 

support both coordination and the transfer of information. Agents also require the 

ability to communicate actions or plans. But how the communication takes place is a 

function of its purpose.  
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1. Agents communicate in order to achieve better the goals of themselves or of the society/ 

system in which they exist.  

2.  Communication can enable the agents to coordinate their actions and behavior, 

resulting in systems that are more coherent.  

3.  Coordination is a property of a system of agents performing some activity in a shared  

environment.  

4.  The degree of coordination is the extent to which they avoid extraneous activity by 

reducing resource contention, avoiding live lock and deadlock, and maintaining 

applicable safety conditions.  

5.  Cooperation is coordination among non-antagonistic agents, while negotiation is 

coordination among competitive or simply self-interested agents.  

6.  Typically, to cooperate successfully, each agent must maintain a model of the other 

agents, and also develop a model of future interactions. This presupposes sociability 

Coherence is how well a system behaves as a unit. A problem for a multiagent system 

is how it can maintain global coherence without explicit global control. In this case, the 

agents must be able on their own to determine goals they share with other agents, 

determine common tasks, avoid unnecessary conflicts, and pool knowledge and 

evidence. It is helpful if there is some form of organization among the agents.  

Dimensions of Meaning  

There are three aspects to the formal study of communication: syntax (how the symbols 

of communication are structured), semantics (what the symbols denote), and pragmatics (how 

the symbols are interpreted). Meaning is a combination of semantics and pragmatics. Agents 

communicate in order to understand and be understood, so it is important to consider the 

different dimensions of meaning that are associated with communication.  

1.  Descriptive vs. Prescriptive. Some messages describe phenomena, while others 

prescribe behaviour. Descriptions are important for human comprehension, but are 

difficult for agents to mimic. Appropriately, then, most agent communication languages 

are designed for the exchange of information about activities and behaviour.  

2.  Personal vs. Conventional Meaning. An agent might have its own meaning for a 

message, but this might differ from the meaning conventionally accepted by the other 

agents with which the agent communicates. To the greatest extent possible, multiagent 

systems should opt for conventional meanings, especially since these systems are 

typically open environments in which new agents might be introduced at any time.  

3.  Subjective vs. Objective Meaning Similar to conventional meaning, where meaning is  

determined external to an agent, a message often has an explicit effect on the 
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environment, which can be perceived objectively. The effect might be different than 

that understood internally, i.e., subjectively, by the sender or receiver of the message.  

4.  Speaker's vs. Hearer's vs. Society's Perspective Independent of the conventional or  

objective meaning of a message, the message can be expressed according to the 

viewpoint of the speaker or hearer or other observers.  

5.  Semantics vs. Pragmatics The pragmatics of a communication are concerned with how 

the communicators use the communication. This includes considerations of the mental 

states of the communicators and the environment in which they exist, considerations 

that are external to the syntax and semantics of the communication.  

6.  Contextuality Messages cannot be understood in isolation, but must be interpreted in 

terms of the mental states of the agents, the present state of the environment, and the 

environment's history: how it arrived at its present state. Interpretations are directly 

affected by previous messages and actions of the agents.  

7.  Coverage Smaller languages are more manageable, but they must be large enough so 

that an agent can convey the meanings it intends.  

8.  Identity When a communication occurs among agents, its meaning is dependent on the  

identities and roles of the agents involved, and on how the involved agents are specified. 

A message might be sent to a particular agent, or to just any agent satisfying a specified 

criterion.  

9.  Cardinality A message sent privately to one agent would be understood differently than 

the same message broadcast publicly.  

4.4 MESSAGE TYPES  

1.  It is important for agents of different capabilities to be able to communicate. 

Communication must therefore be defined at several levels, with communication at the 

lowest level used for communication with the least capable agent.  

2.  In order to be of interest to each other, the agents must be able to participate in a 

dialogue. Their role in this dialogue may be either active, passive, or both, allowing 

them to function as a master, slave, or peer, respectively.  

3.  In keeping with the above definition for and assumptions about an agent, we assume 

that an agent can send and receive messages through a communication network.  

4.  The messages can be of several types, as defined next.  

5.  There are two basic message types: assertions and queries. Every agent, whether active 

or passive, must have the ability to accept information. In its simplest form, this 

information is communicated to the agent from an external source by means of an 

assertion. In order to assume a passive role in a dialog, an agent must additionally be 
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able to answer questions, i.e., it must be able to 1) accept a query from an external 

source and 2) send a reply to the source by making an assertion. Note that from the 

standpoint of the communication network, there is no distinction between an unsolicited 

assertion and an assertion made in reply to a query.  

6.  In order to assume an active role in a dialog, an agent must be able to issue queries and 

make assertions. With these capabilities, the agent then can potentially control another 

agent by causing it to respond to the query or to accept the information asserted. This 

means of control can be extended to the control of subagents, such as neural networks 

and databases.  

7.  An agent functioning as a peer with another agent can assume both active and passive 

roles in a dialog. It must be able to make and accept both assertions and queries. 

4.5 SPEECH ACTS  

Spoken human communication is used as the model for communication among 

computational agents. A popular basis for analyzing human communication is speech act 

theory [1, 39]. Speech act theory views human natural language as actions, such as requests, 

suggestions, commitments, and replies. For example, when you request something, you are not 

simply making a statement, but creating the request itself. When a jury declares a defendant 

guilty, there is an action taken: the defendant's social status is changed.  

A speech act has three aspects: 

1.  Locution, the physical utterance by the speaker  

2. Illocution, the intended meaning of the utterance by the speaker  

3.  Perlocution, the action that results from the locution. KQML (Knowledge Query and 

Manipulation Language)  

1.  The KQML is an interesting example of communication from a number of facets. For 

example, communication requires the ability to locate and engage a peer in a 

conversation (communication layer).  

2.  A method for packaging the messages is then necessary (messaging layer), and finally 

an internal format that represents the messages and is sufficiently expressive to convey 

not only information but requests, responses, and plans (content layer).  

3.  In a network of KQML-speaking agents, there exists programs to support 

communication. These consist of facilitators that can serve as name servers to KQML 

components, and help find other agents that can satisfy a given agent’s request.  

4.  A KQML router supports the routing of messages and is a front-end to a specific KQML 

agent. As KQML was originally written in Common LISP, it’s message representation 

follows the LISP example (balanced parentheses). 
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5.  A KQML message can be transferred to any particular transport (such as sockets) and 

has a format that consists of a performative and a set of arguments for that performative. 

The performative defines the speech act which defines the purpose of the message 

(assertion, command, request, etc.).  

6.  The performative- name defines the particular message type to be communicated 

(evaluate, ask- if, stream-about, reply, tell, deny, standby, advertise, etc.). The sender 

and receiver define the unique names of the agents in the dialogue. The content is 

information specific to the performative being performed.  

7.  This content is defined in a language (how to represent the content), and an ontology 

that describes the vocabulary (and meaning) of the content. Finally, the agent can attach 

a context which the response will contain (in-reply-to) in order to correlate the request 

with the response. The structure of a KQML message.  

(performative-name 

: sender X  

: receiver Y  

: content Z  

: language L  

: ontology Y  

: reply-with R  

: in-reply-to Q 

)  

Let’s now look at an example conversation between two KQML agents. In this 

example, an agent requests the current value of a temperature sensor in a system. The request 

is for the temperature of TEMP_SENSOR_1A that’s sampled at the temperature-server agent. 

The content is the request, defined in the prolog language. Our agent making the request is 

called thermal-control-appl.  

(ask-one 

:sender thermal-control-appl 

:receiver temperature-server  

:languageprolog 

:ontology CELSIUS-DEGREES  

:content “temperature(TEMP_SENSOR_1A ?temperature)” 

:reply-with request-102  

)  

Our agent would then receive a response from the temperature-server, defining the 

temperature of the sensor of interest.  
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(reply 

:sender temperature-server  

:receiver thermal-control-appl 

:languageprolog 

:ontology CELSIUS-DEGREES  

:content “temperature(TEMP_SENSOR_1A 45.2)”  

:in-reply-to request-102  

)  

Our agent would then receive a response from the temperature-server, defining the 

temperature of the sensor of interest, 

(reply 

:sender temperature-server 

:receiver thermal-control-appl 

:languageprolog 

:ontology CELSIUS-DEGREES 

:content “temperature(TEMP_SENSOR_1A 45.2_” 

:in-reply-to request1102 

) 

KQML is very rich in its ability to communicate information as well higher-level 

request that address the communication layer. Table 4.1 provides a short list of some of the 

other KQML per formatives. 

4.6 KQML PERFORMATIVES 

Table 4.1 

Performatives Description 

Evaluate Evaluate the content of the message 

ask-one Request for the answer to the question 

reply Communicate a reply to a question 

stream-about Provide multiple response to a question 

sorry  Return an error (can’t respond) 

tell Inform an agent of sentence 

achieve A request of something to achieve by the receiver 

advertise Advertise the ability to process a performative 

subscribe Subscribe to changes of information 

forward Route a message 
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➢ KQML is a useful language to communicate not only data, but the meaning of the data 

(in terms of a language and ontology). 

➢ KQML provides a rich set of capabilities that cover basic speed acts, and more complex 

acts including data streaming and control of information transfer. 

4.7 ACL (FIPA AGENT COMMUNICATION LANGUAGE)  

1.  Where KQML is a language defined in the context of a university, the FIPA ACL is a  

consortium-based language for agent communication.  

2.  ACL simply means Agent Communication Language and it was standardized through 

the Foundation for Intelligent Physical Agents consortium. As with KQML, ACL is a 

speech- act language defined by a set of per formatives.  

3.  The FIPA, or Foundation for Intelligent Physical Agents, is a non-profit organization 

that promotes the development of agent-based systems. It develops specifications to 

maximize the portability of agent systems (including their ability to communicate using 

the ACL).  

4.  The FIPA ACL is very similar to the KQML, even adopting the inner and outer content  

layering for message construction (meaning and content).  

5.  The ACL also clarifies certain speech-acts, or performatives. For example, 

communication primitives are called communicative acts, which are separate from the 

performative acts.  

6.  The FIPA ACL also uses the Semantic Language, or SL, as the formal language to 

define ACL semantics. This provides the means to support BDI themes (beliefs, desires,  

intentions). In other words, SL allows the representation of persistent goals (intentions), 

as well as propositions and objects. Each agent language has its use, and while both 

have their differences, they can also be viewed as complementary.  

XML 

1.  XML is the Extensible Markup Language and is an encoding that represents data and 

meta- data (meaning of the data). It does this with a representation that includes tags 

that encapsulate the data.  

2.  The tags explicitly define what the data represents. For example, consider the ask-one  

request from KQML. This can be represented as XML as shown below: 
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1. There are some obvious similarities to XML and KQML. In KQML, the tags exist, 

but use different syntax than is defined for XML. One significant difference is that 

KQML permits the layering of tags.  

2.  Note here that the <msg> tag is the outer layer of the performative and its arguments. 

XML is very flexible in its format and permits very complex arrangements of both 

data and meta-data.  

3.  XML is used in a number of protocols, including XML-RPC (Remote Procedure Call) 

and also SOAP (Simple Object Access Protocol). Each of these use the Hyper Text 

Transport Protocol (HTTP) as its transport. 

TRUST AND REPUTATION  

It depends on the level we apply it:  

1.  User confidence  

•  Can we trust the user behind the agent?  

–  Is he/she a trustworthy source of some kind of knowledge? (e.g. an expert  

in a field)  

–  Does he/she acts in the agent system (through his agents in a trustworthy  

way?  

2.  Trust of users in agents  

•  Issues of autonomy: the more autonomy, less trust  

•  How to create trust?  

–  Reliability testing for agents  

–  Formal methods for open MAS  

–  Security and verifiability  

3. Trust of agents in agents  

•  Reputation mechanisms  

•  Contracts  

•  Norms and Social Structures  
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What is Trust?  

1.  In closed environments, cooperation among agents is included as part of the designing 

process:  

2.  The multi- agent system is usually built by a single developer or a single team of 

developers and the chosen developers, option to reduce complexity is to ensure 

cooperation among the agents they build including it as an important system 

requirement.  

3.  Benevolence assumption: an agent AI requesting information or a certain service from 

agent aj can be sure that such agent will answer him if AI has the capabilities and the 

resources needed, otherwise aj will inform AI that it cannot perform the action 

requested. 

4.  It can be said that in closed environments trust is implicit.  

Trust can be computed as  

1.  A binary value (1=‘I do trust this agent’, 0=‘I don’t trust this agent’)  

2. A set of qualitative values or a discrete set of numerical values (e g ‘trust always’ ‘trust 

conditional to X’ ‘no trust’) e.g. always, X, trust ) (e.g. ‘2’, ‘1’, ‘0’, ‘-1’, ‘-2’)  

3. A continuous numerical value (e.g. [-300..300])  

4. A probability distribution  

5.  Degrees over underlying beliefs and intentions (cognitive approach) 

HOW TO COMPUTE TRUST  

1.  Trust values can be externally defined  

•  by the system designer: the trust values are pre-defined  

•  by the human user: he can introduce his trust values about the humans behind the other  

agents  

2.  Trust values can be inferred from some existing representation about the interrelations 

between the agents  

•  Communication patterns, cooperation history logs, e-mails, webpage connectivity  

mapping...  

3.  Trust values can be learnt from current and past experiences  

•  Increase trust value for agent AI if behaves properly with us  

•  Decrease trust value for agent AI if it fails/defects us  
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4.  Trust values can be propagated or shared through a MAS  

•  Recommender systems, Reputation mechanisms.  

TRUST AND REPUTATION  

1.  Most authors in literature make a mix between trust and reputation  

2.  Some authors make a distinction between them  

3.  Trust is an individual measure of confidence that a given agent has over other agent(s) 

4.  Reputation is a social measure of confidence that a group of agents or a society has over 

agents or groups. Reputation is one mechanism to compute (individual) Trust  

• I will trust more an agent that has good reputation  

•  My reputation clearly affects the amount of trust that others have towards me.  

•  Reputation can have a sanctioning role in social groups: a bad reputation can be very  

costly to one’s future transactions.  

5.  Most authors combine (individual) Trust with some form of (social) Reputation in their 

models 

6.  Recommender systems, Reputation mechanisms.  

 

Figure 4.10 TRUST AND REPUTATION 
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Direct experiences are the most relevant and reliable information source for individual  

trust/reputation  

1.  Type 1: Experience based on direct interaction with the  

2.  Type 1: Experience with the partner  

1.  Used by almost all models  

2.  How to:  

•  trust value about that partner increases with good experiences,  

•  it decreases with bad ones  

3.  Problem: how to compute trust if there is no previous interaction?  

3.  Type 2: Experience based on observed interaction of other members  

1.  Used only in scenarios prepared for this.  

2.  How to: depends on what an agent can observe  

•  agents can access to the log of past interactions of other agents  

•  agents can access some feedback from agents about their past interactions (e.g., in  

eBay)  

3. Problem: one has to introduce some noise handling or  

4.  confidence level on this information  

4. Prior-derived: agents bring with them prior beliefs about strangers  

Used by some models to initialize trust/reputation values  

How-to:  

• designer or human user assigns prior values  

• a uniform distribution for reputation priors is set 

Give new agents the lowest possible reputation value there is no incentive to throw 

away a cyber-identity when an agent’s reputation falls below a starting point.  

•  Assume neither good nor bad reputation for unknown agents.  

•  Avoid lowest reputation for new, valid agents as an obstacle for other agents to realize 

that they are valid.  

5.  Group-derived:  

•  Models for groups can been extended to provide prior reputation estimates for agents 

in  social groups.  

•  Mapping between the initial individual reputation of a stranger and the group from 

which he or she comes from.  

•  Problem: highly domain-dependent and model-dependent.  

6.  Propagated:  

•  Agent can attempt to estimate the stranger’s reputation based on information garnered 

from others in the environment Also called word of mouth.  
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•  Problem: The combination of the different reputation values tends to be an ad-hoc 

solution with no social basis  

TRUST AND REPUTATION MODELS  

1. Not really for MAS, but can be applied to MAS  

2.  Idea: For serious life / business decisions, you want the  

•  opinion of a trusted e pert trusted expert  

3.  If an expert not personally known, then want to find a reference to one via a chain of 

friends and colleagues  

4.  Referral-chain provides:  

•  Way to judge quality of expert's advice  

•  Reason for the expert to respond in a trustworthy manner  

•  Finding good referral-chains is slow, time-consuming, but vital business gurus on  

“networking”  

• Set of all possible referral-chains = a social network  

5. Model integrates information from  

• Official organizational charts (online)  

• Personal web pages (+ crawling)  

• External publication databases  

•  Internal technical document databases  

6. Builds a social network based in referral chains  

• Each node is a recommender agent  

• Each node provides reputation values for specific areas  

o E.g. Frieze is good in mathematics  

• Searches in the referral network are  

• made by areas  

o E.g. browsing the network’s “mathematics” recommendation chains  

7. Trust Model Overview  

• 1-to-1 asymmetric trust relationships.  

• Direct trust and recommender trust.  

•  Trust categories and trust values 

• [-1,0,1,2,3,4].  

8. Conditional transitivity.  

Alice trusts Bob.&. Bob trusts Cathy  

Alice trusts Cathy  

Alice trusts.rec Bob.&. Bob says Bob trusts Cathy 

Alice may trust Cathy 

Alice trusts.rec Bob value X. &. Bob says Bob trusts Cathy value Y 
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Alice may trust Cathy value f(X, Y)  

9. Recommendation protocol  

1. Alice ->Bob: RRQ(Eric) 

2.  Bob ->Cathy: RRQ(Eric) 

3.  Cathy -> Bob: Rec(Eric,3) 

4.  Bob ->Alice: Rec(Eric,3) 

 

Figure 4.11 Procedure 

 

12.  Direct Trust:  

◼  ReGreT assumes that there is no difference between direct interaction and direct  

observation in terms of reliability of the information. It talks about direct experiences.  

◼  The basic element to calculate a direct trust is the outcome.  

◼ An outcome of a dialog between two agents can be either:  

•  An initial contract to take a particular course of action and the actual result of the actions  

taken, or  

•  An initial contract to x the terms and conditions of a transaction and the actual values 

of the terms of the transaction.  
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13.  Reputation Model: Witness reputation  

a.  First step to calculate a witness reputation is to identify the set of witnesses that will be  

taken into account by the agent to perform the calculation.  

b.  The initial set of potential witnesses might be  

i.  the set of all agents that have interacted with the target agent in the past.  

ii.  This set, however, can be very big and the information provided by its members  

probably suffer from the correlated evidence problem.  

c.  Next step is to aggregate these values to obtain a single value for the witness reputation.  

The importance of each piece of information in the final reputation value will be 

proportional to the witness credibility  

14.  Reputation Model: Witness reputation  

a.  Two methods to evaluate witness credibility:  

i.  ReGreT uses fuzzy rules to calculate how the structure of social relations influences the  

credibility on the information. The antecedent of each rule is the type and degree of a  

social relation (the edges in a sociogram) and the consequent is the credibility of the  

witness from the point of view of that social relation.  

ii The second method used in the ReGreT system to calculate the credibility of a witness  

is to evaluate the accuracy of previous pieces of information sent by that witness to the 

agent. The agent is using the direct trust value to measure the truthfulness of the 

information received from witnesses.  

15. Reputation Model: Neighbourhood Reputation  

a.  Neighbourhood in a MAS is not related with the physical location of the agents but with  

the links created through interaction.  

b.  The main idea is that the behaviour of these neighbours and the kind of relation they  

have with the target agent can give some clues about the behaviour of the target agent.  

c.  To calculate a Neighbourhood Reputation the ReGreT system uses fuzzy rules.  

i.  The antecedents of these rules are one or several direct trusts associated to different  

behavioural aspects and the relation between the target agent and the neighbour.  

ii.  The consequent is the value for a concrete reputation (that can be associated to the  

same behavioural aspect of the trust values or not). 

16.  Reputation Model: System Reputation  

a.  To use the common knowledge about social groups and the role that the agent is playing  

in the society as a mechanism to assign default reputations to the agents.  

b.  ReGreT assumes that the members of these groups have one or several observable  

features that unambiguously identify their membership.  

c.  Each time an agent performs an action we consider that it is playing a single role.  

i.  E.g. an agent can play the role of buyer and seller but when it is selling a product only  

the role of seller is relevant.  
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17.  System reputations are calculated using a table for each social group where the rows 

are the roles the agent can play for that group, and the columns the behavioural aspects.  

18.  Reputation Model: Default Reputation  

a.  To the previous reputation types we have to add a fourth one, the reputation assigned 

to a third party agent when there is no information at all: the default reputation.  

b. Usually this will be a fixed value  

19. Reputation Model: Combining reputations  

a.  Each reputation type has different characteristics and there are a lot of heuristics that 

can be used to aggregate the four reputation values to obtain a single and representative  

reputation value.  

b.  In ReGreT this heuristic is based on the default and calculated reliability assigned to 

each type.  

c.  Assuming we have enough information to calculate all the reputation types, we have  

the stance that  

a.  witness reputation is the first type that should be considered, followed by  

b. the neighbourhood reputation,  

c. system reputation  

d. the default reputation.  

20.  Main criticism to Trust and Reputation research:  

a.  Proliferation of ad-hoc models weakly grounded in social theory  

b.  No general, cross-domain model for reputation  

c.  Lack of integration between models  

i.  Comparison between models unfeasible  

ii. Researchers are trying to solve this by, e.g. the ART competition  

NEGOTIATION  

1.  A frequent form of interaction that occurs among agents with different goals is termed  

negotiation.  

2.  Negotiation is a process by which a joint decision is reached by two or more agents, 

each trying to reach an individual goal or objective. The agents first communicate their 

positions, which might conflict, and then try to move towards agreement by making 

concessions or searching for alternatives.  

3.  The major features of negotiation are (1) the language used by the participating agents, 

(2) the protocol followed by the agents as they negotiate, and (3) the decision process 

that each agent uses to determine its positions, concessions, and criteria for agreement.  

4.  Many groups have developed systems and techniques for negotiation. These can be 

either environment-centered or agent-centered. Developers of environment-centered 

techniques focus on the following problem: "How can the rules of the environment be 
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designed so that the agents in it, regardless of their origin, capabilities, or intentions, 

will interact productively and fairly?"  

The resultant negotiation mechanism should ideally have the following attributes:  

•  Efficiency: the agents should not waste resources in coming to an agreement.  

Stability: no agent should have an incentive to deviate from agreed- upon strategies.  

•  Simplicity: the negotiation mechanism should impose low computational and 

bandwidth demands on the agents.  

•  Distribution: the mechanism should not require a central decision maker.  

•  Symmetry: the mechanism should not be biased against any agent for arbitrary or  

inappropriate reasons.  

5.  An articulate and entertaining treatment of these concepts is found in [36]. In particular, 

three types of environments have been identified: worth-oriented domains, state-

oriented domains, and task-oriented domains.  

6.  A task-oriented domain is one where agents have a set of tasks to achieve, all resources 

needed to achieve the tasks are available, and the agents can achieve the tasks without 

help or interference from each other. However, the agents can benefit by sharing some 

of the tasks. An example is the "Internet downloading domain," where each agent is 

given a list of documents that it must access over the Internet. There is a cost associated 

with downloading, which each agent would like to minimize. If a document is common 

to several agents, then they can save downloading cost by accessing the document once 

and then sharing it. 

7.  The environment might provide the following simple negotiation mechanism and 

constraints:  

(1) each agent declares the documents it wants  

(2) documents found to be common to two or more agents are assigned to agents 

based on the toss of a coin,  

(3)  agents pay for the documents they download, and  

(4)  agents are granted access to the documents they download. as well as any in 

their common sets. This mechanism is simple, symmetric, distributed, and 

efficient (no document is downloaded twice). To determine stability, the agents' 

strategies must be considered.  

8. An optimal strategy is for an agent to declare the true set of documents that it needs, 

regardless of what strategy the other agents adopt or the documents they need. Because 

there is no incentive for an agent to diverge from this strategy, it is stable.  
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9.  For the first approach, speech-act classifiers together with a possible world semantics 

are used to formalize negotiation protocols and their components. This clarifies the 

conditions of satisfaction for different kinds of messages. To provide a flavor of this 

approach, we show in the following example how the commitments that an agent might 

make as part of a negotiation are formalized [21]:  

 

10. This rule states that an agent forms and maintains its commitment to achieve ø  

individually iff (1) it has not precommitted itself to another agent to adopt and achieve 

ø, (2) it has a goal to achieve ø individually, and (3) it is willing to achieve ø 

individually. The chapter on "Formal Methods in DAI" provides more information on 

such descriptions.  

11.  The second approach is based on an assumption that the agents are economically 

rational. Further, the set of agents must be small, they must have a common language 

and common problem abstraction, and they must reach a common solution. Under these 

assumptions, Rosenschein and Zlotkin [37] developed a unified negotiation protocol. 

Agents that follow this protocol create a deal, that is, a joint plan between the agents 

that would satisfy all of their goals. The utility of a deal for an agent is the amount he 

is willing to pay minus the cost of the deal. Each agent wants to maximize its own 

utility.  

The agents discuss a negotiation set, which is the set of all deals that have a positive utility for 

every agent.  

In formal terms, a task-oriented domain under this approach becomes a tuple <T, A, c> 

where T is the set of tasks, A is the set of agents, and c(X) is a monotonic function for the cost 

of executing the tasks X. A deal is a redistribution of tasks. The utility of deal d for agent k is 

Uk(d) = c(Tk) - c(dk)  

The conflict deal D occurs when the agents cannot reach a deal. A deal d is individually rational 

if d > D. Deal d is pareto optimal if there is no deal d' > d. The set of all deals that are 

individually rational and pareto optimal is the negotiation set, NS. There are three possible 

situations:  

1.  conflict: the negotiation set is empty  

2.  compromise: agents prefer to be alone, but since they are not, they will agree to a 

negotiated deal  
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3.  cooperative: all deals in the negotiation set are preferred by both agents over achieving 

their goals alone.  

When there is a conflict, then the agents will not benefit by negotiating—they are better 

off acting alone. Alternatively, they can "flip a coin" to decide which agent gets to satisfy its 

goals.  

Negotiation is the best alternative in the other two cases.  

Since the agents have some execution autonomy, they can in principle deceive or 

mislead each other. Therefore, an interesting research problem is to develop protocols or 

societies in which the effects of deception and misinformation can be constrained. Another 

aspect of the research problem is to develop protocols under which it is rational for agents to 

be honest with each other. The connections of the economic approaches with human-oriented 

negotiation and argumentation have not yet been fully worked out.  

4.7 BARGAINING  

Link: http://www.cse.iitd.ernet.in/~rahul/cs905/lecture15/index.html (Refer this link 

for easy understanding) A bargaining problem is defined as a pair (S,d). A bargaining solution 

is a function f that maps every bargaining problem (S,d) to an outcome in S, i.e.,  

f : (S,d) → S  

Thus the solution to a bargaining problem is a pair in R2. It gives the values of the game 

to the two players and is generated through the function called bargaining function.  

Bargaining function maps the set of possible outcomes to the set of acceptable ones.  

 

Bargaining Solution  

In a transaction when the seller and the buyer value a product differently, a surplus is 

created. A bargaining solution is then a way in which buyers and sellers agree to divide the 

surplus. For example, consider a house made by a builder A. It costed him Rs.10 Lacs. A 

potential buyer is interested in the house and values it at Rs.20 Lacs. This transaction can 

generate a surplus of Rs.10 Lacs. The builder and the buyer now need to trade at a price. The 

buyer knows that the cost is less than 20 Lacs and the seller knows that the value is greater than 

10 Lacs. The two of them need to agree at a price. Both try to maximize their surplus. Buyer 

would want to buy it for 10 Lacs, while the seller would like to sell it for 20 Lacs. They bargain 

on the price, and either trade or dismiss. Trade would result in the generation of surplus, 

whereas no surplus is created in case of no-trade. Bargaining Solution provides an acceptable 

way to divide the surplus among the two parties. Formally, a Bargaining Solution is defined 

as, F : (X,d) → S,  

where X  R2 and S,d R2. X represents the utilities of the players in the set of possible 

bargaining agreements. d represents the point of disagreement. In the above example, price  
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[10,20], bargaining set is simply x + y  10, x  0, y  0. A point (x,y) in the bargaining set 

represents the case, when seller gets a surplus of x, and buyer gets a surplus of y, i.e. seller sells 

the house at 10 + x and the buyer pays 20 − y.  

1.  the set of payoff allocations that are jointly feasible for the two players in the process 

of negotiation or arbitration, and  

2.  the payoffs they would expect if negotiation or arbitration were to fail to reach a 

settlement.  

Based on these assumptions, Nash generated a list of axioms that a reasonable solution 

ought to satisfy. These axioms are as follows:  

Axiom 1 (Individual Rationality) This axiom asserts that the bargaining solution should 

give neither player less than what it would get from disagree ment, i.e., f(S,d) ≥ d.  

Axiom 2 (Symmetry) As per this axiom, the solution should be independent of the 

names of the players, i.e., who is named a and who is named b. This means that when the 

players’ utility functions and their disagreement utilities are the same, they receive equal 

shares. So any symmetries in the final payoff should only be due to the differences in their 

utility functions or their disagreement outcomes.  

Axiom 3 (Strong Efficiency) This axiom asserts that the bargaining solution should be 

feasible and Pareto optimal.  

Axiom 4 (Invariance) According to this axiom, the solution should not change as a 

result of linear changes to the utility of either player. So, for example, if a player’s utility 

function is multiplied by 2, this should not change the solution. Only the player will value what 

it gets twice as much.  

Axiom 5 (Independence of Irrelevant Alternatives) This axiom asserts that eliminating 

feasible alternatives (other than the disagreement point) that would not have been chosen 

should not affect the solution, i.e., for any closed convex set  

 Nash proved that the bargaining solution that satisfies the above five axioms is given 

by:  

 

 

NON-COOPERATIVE MODELS OF SINGLE-ISSUE NEGOTATION 

Table 4.2 

Cooperative Game Non Cooperative Game 
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The players are allowed to communicate 

before choosing their strategies and playing 

the game. 

Each player independently chooses its 

strategy. 

The basic modeling unit is the group The basic modeling unit is the individual. 

Players can enforce cooperation in the group 

through a third party. 

The cooperation between individuals is self-

enforcing. 

 

4.8 GAME-THEORETIC APPROACHES FOR MULTI-ISSUE NEGOTIATION  

The following are the four key procedures for bargaining over multiple issue:  

1.  Global bargaining: Here, the bargaining agents directly tackle the global problem in 

which all the issues are addressed at once. In the context of non-cooperative theory, the 

global bargaining procedure is also called the package deal procedure. In this 

procedure, an offer from one agent to the other would specify how each one of the 

issues is to be resolved.  

2.  Independent/separate bargaining: Here negotiations over the individual issues are 

totally separate and independent, with each having no effect on the other. This would 

be the case if each of the two parties employed m agents (for negotiating over m issues), 

with each agent in charge of negotiating one issue. For example, in negotiations 

between two countries, each issue may be resolved by representatives from the 

countries who care only about their individual issue.  

3.  Sequential bargaining with independent implementation: Here the two parties consider 

one issue at a time. For instance, they may negotiate over the first issue, and after 

reaching an agreement on it, move on to negotiate the second, and so on. Here, the 

parties may not negotiate an issue until the previous one is resolved. There are several 

forms of the sequential procedure. These are defined in terms of the agenda and the 

implementation rule. For sequential bargaining, the agenda3 specifies the order in 

which the issues will be bargained. The implementation rule specifies when an 

agreement on an individual issue goes into effect. There are two implementation rules: 

the rule of independent implementation and the rule of simultaneous implementation. 

4. Sequential bargaining with simultaneous implementation: This is similar to the 

previous case except that now an agreement on an issue does not take effect until an 

agreement is reached on all the subsequent issues.  

Cooperative Models of Multi-Issue Negotiation  

1.  Simultaneous implementation agenda independence: This axiom states that global 

bargaining and sequential bargaining with simultaneous implementation yield the same 

agreement.  
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2.  Independent implementation agenda independence: This axiom states that global 

bargaining and sequential bargaining with independent implementation yield the same 

agreement.  

3.  Separate/global equivalence: This axiom states that global bargaining and separate 

bargaining yield the same agreement.  

 Non-Cooperative Models of Multi-Issue Negotiation 

 An agent’s cumulative utility is linear and additive. The functions Ua and Ub give the 

cumulative utilities for a and b respectively at time t and are defined as follows. 

    (4.1) 

    (4.2) 

Where waR+
m denotes an m element vector of constants for agent a and wbR+

m such a vector 

b. These vectors indicate how the agents prefer different issuers. For example, if wa
c> wa

c+1, 

then agent a values issue c more than issue c+ 1. Like for agent b. 

4.9 ARGUMENTATION  

➢ “A verbal and social activity of reason aimed at increasing (or decreasing) the 

acceptability of a controversial standpoint for the listener or reader, by putting forward 

a constellation of propositions (i.e. arguments) intended to justify (or refute) the 

standpoint before a rational judge”  

➢ Argumentation can be defined as an activity aimed at convincing of the acceptability 

of a standpoint by putting forward propositions justifying or refuting the standpoint.  

➢ Argument: Reasons / justifications supporting a conclusion  

➢ Represented as: support ->conclusion  

–  Informational arguments: Beliefs -> Belief e.g. If it is cloudy, it might rain.  

–  Motivational args: Beliefs, Desires ->Desire e.g. If it is cloudy and you want to get out 

then you don’t want to get wet.  

– Practical arguments: Belief, Sub-Goals -> Goal e.g. If it is cloudy and you own a 

raincoat then put the raincoat.  
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–  Social arguments: Social commitments-> Goal, Desire e.g. I will stop at the corner 

because the law say so. e.g I can’t do that, I promise to my mother that won’t.  

Process of Argumentation 

1.  Constructing arguments (in favor of / against a “statement”) from available information.  

A:  “Tweety is a bird, so it flies”  

B: “Tweety is just a cartoon!”  

2.  Determining the different conflicts among the arguments.  

“Since Tweety is a cartoon, it cannot fly!” (B attacks A)  

Evaluating the acceptability of the different arguments  

“Since we have no reason to believe otherwise, we’ll assume Tweety is a cartoon.” 

(accept B). “But then, this means despite being a bird he cannot fly.” (reject A).  

3. Concluding, or defining the justified conclusions.  

“We conclude that Tweety cannot fly!”  

Computational Models of Argumentation:  

1.  Given the definition of arguments over a content language (and its logic), the models 

allow to:  

•  Compute interactions between arguments: attacks, defeat, support,... 

•  Valuation of arguments: assign weights to arguments in order to compare them. 

Intrinsic value of an argument Interaction-based value of an argument  

2. Selection of acceptable argument (conclusion)  

•  Individual acceptability  

•  Collective acceptability  

4.10 OTHER ARCHITECTURES  

LAYERED ARCHITECTURES  

Given the requirement that an agent be capable of reactive and pro-active behavior, an 

obvious decomposition involves creating separate subsystems to deal with these different types 

of behaviors. This idea leads naturally to a class of architectures in which the various 

subsystems are arranged into a hierarchy of interacting layers. In this section, we will consider 

some general aspects of layered architectures, and then go on to consider two examples of such 

architectures:  

INTERRAP and TOURINGMACHINES 

Typically, there will be at least two layers, to deal with reactive and pro-active 

behaviors respectively. In principle, there is no reason why there should not be many more 

layers. However many layers there are, a useful typology for such architectures is by the 
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information and control flows within them. Broadly speaking, we can identify two types of 

control flow within layered architectures (see Figure):  

•  Horizontal layering.  In horizontally layered architectures (Figure (a)), the software 

layers are each directly connected to the sensory input and action output. In effect, each 

layer itself acts like an agent, producing suggestions as to what action to perform.  

•  Vertical layering. In vertically layered architectures (Figure (b) and (c)), sensory input 

and action output are each dealt with by at most one layer each.  

The great advantage of horizontally layered architectures is their conceptual simplicity: 

if we need an agent to exhibit n different types of behavior, then we implement n 

different layers.  

However, because the layers are each in effect competing with one-another to generate 

action suggestions, there is a danger that the overall behavior of the agent will not be coherent. 

In order to ensure that horizontally layered architectures are consistent, they generally include 

a mediator function, which makes decisions about which layer has ''control" of the agent at any 

given time.  

The need for such central control is problematic: it means that the designer must 

potentially consider all possible interactions between layers. If there are n layers in the 

architecture, and each layer is capable of suggesting m possible actions, then this means there 

are mn such interactions to be considered. This is clearly difficult from a design point of view 

in any but the simplest system. The introduction of a central control system also introduces a 

bottleneck into the agent's decision making 

 

Figure 4.12 INTERRAP and TOURINGMACHINES 

 

ABSTRACT ARCHITECTURE  

1. We can easily formalize the abstract view of agentgs presented so far. First, we will 

assume that the state of the agent’s environment can be characterized as a set S = {s1, 

s2,…) of environment states. 
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2. At any given instant, the environment is assumed to be in one of these states. The 

effectoric capability of an agent is assumed to be represented by a set A = (a1, a2,…) 

of actions. Then abstractly, an agent can be viewed as a function 

Action S* → A 

3. Which maps sequences of enviornment states to actions. We will refer to an agent 

modelled by a function of this form as a standard agent. The intuition is that an agent 

decides what action to perform on the basis of its history – its experiences to date. These 

experiences are represented as a sequence of environment states – those that the agent 

has thus for encountered. 

4. The (non-determinstic) behaviour of an environment can be modelled as a function env: 

 S x A → P (S) 

 Which takes the current state of the environment s  S and an action (perfrmed by the 

agent), and maps them to a set of environment state env(s,a) – those that could result 

from performing action a in state s. If all the sets in the rnage of env are all sigletons, 

(i.e., if the result of performing any action in any state in a set containing a single 

member), then the environment is deterministic, and its behaviour can be accrately 

predicted. 

5. We can represented the interaction of agent and environment as a history. A history h 

is a sequence: h:: ...... 13210

3210 ⎯→⎯⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ − uu a

u

aaaaa
sssss  

 where so is the initial state of the environment (i.e., its state when the agent starts 

executing), au is the uth action that the agent chose to perform, and su is the uth 

environment state (which is one of the possible results of executing action au-2 in state 

su-1). S* → A is an agent, env: S x S → p(S) is an environment, and so is the initial state 

of environment. 

6. The characteristic behaviour of an agent action S* → A is an envioronment env : is the 

set of all the histories that satisfy these properties. If some property  holds of all these 

histories, this property can be regarded as an invariant  property of the agent in the 

environment. For example, if our agent is a nuclear reactor controller, (i.e., the 

environment is a nuclear reactr), and in all possible histories of the contrller/reactor, the 

reactor does not below up, then this can be regarded as a (desirable) invariant property. 

We will denote by hist(agent, environment) the set of all histories of agent in 

environment. Two agentws ag1 and ag2 are said to be behaviorally equivalent with 

respect to enviroment env iff hist(ag1, env) = hist(ag2, env) and simply behaviorally 

equivalent iffr they are behaviorally equivalent with respect of all environments. 

4.11 CONCRETE ARCHITECTURES FOR INTELLIGENT AGENTS  
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1.  We have considered agents only in the abstract. So, while we have examined the 

properties of agents that do and do not maintain state, we have not stopped to consider 

what this state might look like. Similarly, we have modelled an agent's decision making 

as an abstract function action, which somehow manages to indicate which action to 

perform—but we have not discussed how this function might be implemented. In this 

section, we will rectify this omission. We will consider four classes of agents:  

•  logic based agents—in which decision making is realized through logical deduction;  

•  reactive agents—in which decision making is implemented in some form of direct 

mapping from situation to action;  

•  belief-desire-intention agents—in which decision making depends upon the 

manipulation of data structures representing the beliefs, desires, and intentions of the 

agent; and finally,  

•  layered architectures—in which decision making is realized via various software 

layers, each of which is more-or- less explicitly reasoning about the environment at 

different levels of abstraction.  

In each of these cases, we are moving away from the abstract view of agents, and 

beginning to make quite specific commitments about the internal structure and operation of 

agents. Each section explains the nature of these commitments, the assumptions upon which 

the architectures depend, and the relative advantages and disadvantages of each. 
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UNIT 5  

APPLICATIONS 

 AI applications – Language Models – Information Retrieval- Information Extraction – Natural 

Language Processing – Machine Translation – Speech Recognition. 

5.1 LANGUAGE MODELS 

 Language can be defined as a set of strings; “print(2+2)” is a legal program in the 

language Python, where “2) + (2 print” is not. Since the are an infinite number of legal 

programs, they cannot be enumerated; instead they are specified by a set of rules called a 

grammar. Formal languages also have rules that defined the meaning semantics of a program; 

for example, the rules say that the “meaning” of “2 + 2” is 4, and the meaning of “1/0” is that 

an error is signated. 

1. Natural languages, such an English or Spanish, cannot be characterized as a definite set 

of sentences. Example: Everyone agrees that “Not to be invited is sad” is a sentence of 

English, but people disagree on the grammatically of “To be not invited is said”. 

Therefore, it is more fruitful to define a natural language model as a probability 

distribution over sentences rather than a definitive set. That is, rather than asking if a 

string of words is or is not a member of the set defining the language, we instead ask 

for P(S = word) - what is the probability that a random sentence would to words. Natural 

languages are also ambiguous. “He saw her duck” can mean either that he saw a 

waterfowl belonging to her, or that he saw her move to evade something. Thus, again, 

we cannot speak of a single meaning for a sentence, but rather of a probability 

distribution over possible meanings. 

2. Finally, natural language are difficult to deal with because they are very large, and 

constantly changing. Thus, our language models are, at best, an approximation. We start 

with simplest possible approximation and move up from there. 

5.2 N-GRAM CHARACTER MODELS 

1. An n-gram model is defined as a Markov chain of order n – 1. In Markov chain the 

probability of character ci depends only on the immediately preceding characters, not 

on any other characters. So in a trigram model (Markov chain of order 2) we have 

 P(c4 | c1:i-1) = P(c4 | c4 – 2:i -1) 

 We can define the probability of a sequence of characters P(c1:N) under the trigram 

model by first factoring with the chain rule and then using the Markov assumption: 

  )c|P(c)c|P(cN):P(C 1i:2ii

N
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 For a trigram character model in a language with 100 characters, P(Ci|Ci-2:i=1) has a 

million entries, and can be accurately estimated by counting character sequences in a 

body of text of 10 million characters or more. We call a body of text a corpus (plural 

corpora), from the Latin word for body. 

2. Language identification: Given a text, determine what natural language it is written 

in. This is a relatively easy task, even with short texts such as “Hello, world” or 

“Wiegehtesdir”, it is easy to identify the first as English and the second as German. 

Computer systems identify languages with greater than 99% accuracy; occasionally, 

closely related languages, such as Swedish and Norwegian, are confused. 

3. One approach to language identification is to first build a trigram character model of 

each candidate language, P (ci | ci-2; i-1), where the variable_ranges over languages. 

For each_the model is built by counting trigrams in a corpus of that language. (About 

100,000 characters of each language are needed). That gives us a model of P (Text | 

Language), but we want to select the most probable language given the text, so we apply 

Bayes’ rule followed by the Markov assumption to get the most probable language:  

 N):e|argmaxP(
maxarg

* 1


 =  

)()P(
argmax
 :1 


NCO=  

)1,i:2c|P(c)P(
argmax

44

N

1i




−−= 
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4. Other tasks for character models include spelling correction, genre classification, and 

named-entity recognition. Genre classification means decided if a text is a new story, a 

legal document, a scientific article, etc. While many features help make this 

classification, counts of punctuation and other character n-gram features go a long way 

(Kessler et al., 1997). 

5. Named-entity recognition is the task of finding names of things in a document and 

deciding what class they belong to. For example, in the text “MrSopersteen was 

prescribed aciphex”, we should recognize that “Mr. Sopersteen” is the name of a person 

and “aciphex” is the name of a drug. Character-level models are good for this task 

because they can associate the character sequence “ex” (“ex” followed by a space) with 

a drug name and “steen” with a person name, and thereby identify words that they have 

never seen before. 
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5.3 SMOOTHING N-GRAM MODELS 

1. The major complication of n-gram models is that the training corpus provides only an 

estimate of the true probability distribution. 

2. For common character sequence such as “th” any English corpus will give a good 

estimate: about 1.5% of all trigrams. 

3. On the other hand, “ht” is very uncommon – no dictionary words start5 with ht. It is 

likely that the sequence would  

4. Have a count of zero in a training corpus of standard English. Does that mean we should 

assign P(“th”) = 0? If we did, then the text “The program issues an http request” would 

have an English probability of zero, which seems wrong. 

5. The process adjusting the probability of low-frequency counts is called smoothing. 

6. A better approach is a backoff model, in which we start by estimating n-gram counts, 

but for any particular sequence that has a low (or zero) count, we back off to (n-1) 

grams. Linear interpolation smoothing is a backoff model that combines trigram, and 

unigram models by linear interpolation. It defines the probability estimate as 

 * P(ci|ci-2:i=1) = 3P(ci|ci-2:i-1) + 2P(ci|ci-1) + 1P(ci), where 3 + 2 + 1 = 1. 

 It is also possible to have the values of I depend on the counts: if we have a high count 

of trigrams, then we weigh them relatively more; if only a low count, then we put more 

weight on the bigram and unigram models. 

5.4 MODEL EVALUATION 

1. The evaluation can be a task-specific metric, such as meaning accuracy on language 

identification. 

2. Alternatively, we can have a task-independent model of language quality: calculate the 

probability assigned to the validation corpus by the model; the higher the probability 

the better. This metric is inconvenient because the probability of a large corpus will be 

a very small number, and floating-point underflow becomes an issue. A different way 

of describing the probability of a sequence is with a measure called perplexity, defined 

as 

 Perplexity (c1:N) = P(c1:N)-1/N 

3. Perplexity can be thought of as the reciprocal of probability, normalized by sequence 

length. 

4. It can also be thought of as the weighted average branching factor5 of a model. Suppose 

there are 100 characters in our language, and our model says they are all equally likely. 



157 

Then for a sequence of any length, the perplexity will be 100. If some characters are 

more likely than others, and the model reflects that, then the model will have a 

perplexity less than 100. 

5.5 N-GRAM WORD MODEL 

1. n-gram models over words rather than characters 

2. All the same mechanism applies equally to word and character models.  

3.  The main difference is that the vocabulary— the set of symbols that make up the corpus 

and the model—is larger. 

 4.  There are only about 100 characters in most languages, and sometimes we build 

character models that are even more restrictive, for example by treating “A” and “a” as 

the same symbol or by treating all punctuation as the same symbol. But with word 

models we have at least tens of thousands of symbols, and sometimes millions. The 

wide range is because it is not clear what constitutes a word.  

5.  Word n-gram models need to deal with out of vocabulary words.  

6.  With word models there is always the chance of a new word that was not seen in the 

training corpus, so we need to model that explicitly in our language model.  

7.  This can be done by adding just one new word to the vocabulary: <UNK>, standing for 

the unknown word.  

8.  Sometimes multiple unknown-word symbols are used, for different classes. For 

example, any string of digits might be replaced with <NUM>, or any email address 

with <EMAIL>. 

5.6 INFORMATION RETRIEVAL 

 DEFINITION: Information retrieval is the task of documents that are relevant to a 

user’s need for information.  

The best-known examples of information retrieval systems are search engines on the 

WorldWideWeb. A Web user can type a query such as [AI book] into a search engine and see 

a list of relevant pages. In this section, we will see how such systems are built. An information 

retrieval (henceforth IR) system can be characterized by  

1.  A corpus of documents. Each system must decide what it wants to treat as a document: 

a paragraph, a page, or a multipage text.  

2.  Queries posed in a query language. A query specifies what the user wants to know. The 

query language can be just a list of words, such as [AI book]; or it can specify a phrase 

of words that must be adjacent, as in [“AI book”]; it can contain Boolean operators as 
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in [AI AND book]; it can include non-Boolean operators such as [AI NEAR book] or 

[AI book site:www.aaai.org].  

3.  A result set. This is the subset of documents that the IR system judges to be relevant to 

the query. By relevant, we mean likely to be of use to the person who posed the query, 

for the particular information need expressed in the query.  

4.  A presentation of the result set. This can be as simple as a ranked list of document titles 

or as complex as a rotating color map of the result set projected onto a three-

dimensional space, rendered as a two-dimensional display.  

The earliest IR systems worked on a Boolean keyword model. Each word in the 

document collection is treated as a Boolean feature that is true of a document if the word occurs 

in the document and false if it does not.  

Advantage  

1.  Simple to explain and implement.  

Disadvantages 

1.  The degree of relevance of a document is a single bit, so there is no guidance as to how 

to order the relevant documents for presentation.  

2.  Boolean expressions are unfamiliar to users who are not programmers or logicians. 

Users find it unintuitive that when they want to know about farming in the states of 

Kansas and Nebraska they need to issue the query [farming (Kansas OR Nebraska)]. 

3.  It can be hard to formulate an appropriate query, even for a skilled user. Suppose we 

try [information AND retrieval AND models AND optimization] and get an empty 

result set. We could try [information OR retrieval OR models OR optimization], but if 

that returns too many results, it is difficult to know what to try next.  

5.7 IR SCORING FUNCTIONS  

1.  Most IR systems have abandoned the Boolean model and use models based on the 

statistics of word counts. 

2. A scoring function takes a document and a query and returns a numeric score; the most 

relevant documents have the highest scores  

3.  In the BM25 scoring function, the score is a linear weighted combination of scores for 

each of the words that make up the query  

4.  Three factors affect the weight of a query term:  
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• First, the frequency with which a query term appears in a document (also known as TF 

for term  frequency). For the query [farming in Kansas], documents that mention 

“farming” frequently will have  higher scores.  

• Second, the inverse document frequency of the term, or IDF. The word “in” appears in 

almost every document,  

• so it has a high document frequency, and thus a low inverse document frequency, and 

thus it is not as important to the query as “farming” or “Kansas.”  

• Third, the length of the document. A million-word document will probably mention all 

the query words, but may not actually be about the query. A short document that 

mentions all the words is a much better candidate.  

5. The BM25 function takes all three of these into account 

L

|d|
a.bk.(1)d,TF(q

1)).(kd,TF(q
).IDF(qN):q1,BM25(d

j

ji

ji

i

N

1i
j

+−+

+
=

=

 

 where |dj| is the length of document dj in words, and L is the average document length 

in the corpus, L = i |di| N. We have two parameters, k and b, that can be tuned by cross-

validation; typical values are k = 2.0 and b = 0.75. IDF (qi) is the inverse document. 

6. Systems create an index ahead of time that lists, for each vocabulary word, the 

documents that contain the word. This is called the hit list for the word. Then when 

given an query, we intersect the hit lists of the query words and only score the 

documents in the intersection. 

5.8 IR SYSTEM EVALUATION 

 Imagine the an IR system has returned a result set for a single query, for which we know 

which documents are and are not relevant, out of a corpus of 100 documents. The document 

counts in each category are given in the following table. 

Table 5.1 

 In result set Not in result set 

Relevant 30 20 

Not relevant 10 40 

 

Precision measures the proportion of documents in the result set that are actually 

relevant. In our example, the precision is 30/(30 + 10)=.75. The false positive rate is 1 − 

.75=.25. 2. Recall measures the proportion of all the relevant documents in the collection that 
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are in the result set. In our example, recall is 30/(30 + 20)=.60. The false negative rate is 1 

−.60=.40. 3. In a very large document collection, such as the WorldWideWeb, recall is 

difficult to compute, because there is  no easy way to examine every page on the Web for 

relevance.  

5.9 IR REFINEMENTS  

1.  One common refinement is a better model of the effect of document length on 

relevance.  

2.  The BM25 scoring function uses a word model that treats all words as completely 

independent, but we know that some words are correlated: “couch” is closely related to 

both “couches” and “sofa.” Many IR systems attempt to account for these correlations. 

3.  For example, if the query is [couch], it would be a shame to exclude from the result set 

those documents that mention “COUCH” or “couches” but not “couch.” Most IR 

systems do case folding of “COUCH” to “couch,” and some use a stemming algorithm 

to reduce “couches” to the stem form “couch,” both in the query and the  

documents.  

4.  The next step is to recognize synonyms, such as “sofa” for “couch.” As with stemming, 

this has the potential for small gains in recall, but can hurt precision. Synonyms and 

related words can be found in dictionaries or by looking for correlations in documents 

or in queries.  

5.  As a final refinement, IR can be improved by considering metadata—data outside of 

the text of the document.  Examples include human-supplied keywords and publication 

data. On the Web, hypertext links between documents are a crucial source of 

information.  

5.10 PAGERANKALGORITHM  

PageRank (PR) is an algorithm used by Google Search to rank web pages in their search 

engine results. Page Rank was named after Larry Page, one of the founders of Google. 

PageRank is a way of measuring the importance of website pages. According to Google: 

PageRank works by counting the number and quality of links to a page to determine a rough 

estimate of how important the website is. The underlying assumption is that more important 

websites are likely to receive more links from other website  

 



161 

Figure 5.1 The HITS algorithm for computing hubs and authorities with respect to a 

query. REELVANT-PAGES fetches the pages that match the query and EXPAND-

PAGES adds in every page that links to or is linked from one of the relevant pages. 

NORMALIZE divides each page’s score by the sum of the sequence of all pages’ 

scores (separately for both the authority and hubs scores) 

 

 We will see that the recursion bottom out property. The PageRank for a page p is 

defined as 
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where PR(p) is the PageRank of page p, N is the total number of pages in the corpus, 

ini are the pages that link into p, and C(ini) is the count of the total number of out-links 

on page ini. The constant d is a damping factor. It can be understood through the 

random surface model: imagine a Web surface who starts at some random page and 

begins exploring.  

5.11 THE HITS ALGORITHM  

1.  The Hyperlink-Induced Topic Search algorithm, also known as “Hubs and Authorities” 

or HITS, is another influential link-analysis algorithm.  

2.  HITS differ from PageRank in several ways. First, it is a query-dependent measure: it 

rates pages with respect to a query.  

3.  HITS first find a set of pages that are relevant to the query. It does that by intersecting 

hit lists of queries  

4.  Words, and then adding pages in the link neighborhood of these pages—pages that link 

to or are linked from one of the pages in the original relevant set.  

5.  Each page in this set is considered an authority on the query to the degree that other 

pages in the relevant set point to it. A page is considered a hub to the degree that it 

points to other authoritative pages in the relevant set.  

6.  Just as with PageRank, we don’t want to merely count the number of links; we want to 

give more value to the high-quality hubs and authorities.  

7.  Thus, as with PageRank, we iterate a process that updates the authority score of a page 

to be the sum of the hub scores of the pages that point to it, and the hub score to be the 

sum of the authority scores of the pages it points to. 

 8.  Both PageRank and HITS played important roles in developing our understanding of 

Web information retrieval. These algorithms and their extensions are used in ranking 
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billions of queries daily as search engines steadily develop better ways of extracting yet 

finer signals of search relevance.  

5.12 IMAGE EXTRACTION  

Information extraction is the process of acquiring INFORMATION knowledge by 

skimming a text and looking for occurrences of a particular class of object and for relationships 

among objects. A typical task is to extract instances of addresses from Web pages, with 

database fields for street, city, state, and zip code; or instances of storms from weather reports, 

with fields for temperature, wind speed, and precipitation. In a limited domain, this can be done 

with high accuracy.  

5.13 FINITE-STATE AUTOMATA FOR INFORMATION EXTRACTION 

1.  The simplest type of information extraction system is an attribute-based extraction 

system that assumes that the entire text refers to a single object and the task is to extract 

attributes of that object.  

2.  One step up from attribute-based extraction systems are relational extraction systems, 

which deal with multiple objects and the relations among them.  

3.  A typical relational-based extraction system is FASTUS, which handles news stories 

about corporate mergers and acquisitions.  

4.  A relational extraction system can be built as a series of cascaded finite-state 

transducers.  

5.  That is, the system consists of a series of small, efficient finite-state automata (FSAs), 

where each automaton receives text as input, transduces the text into a different format, 

and passes it along to the next automaton. FASTUS consists of five stages: 1. 

Tokenization 2. Complex-word handling 3. Basic-group handling 4. Complex-phrase 

handling 5. Structure merging  

6.  FASTUS’s first stage is tokenization, which segments the stream of characters into 

tokens (words, numbers, and punctuation). For English, tokenization can be fairly 

simple; just separating characters at white space or punctuation does a fairly good job. 

Some tokenizers also deal with markup languages such as HTML, SGML, and XML.  

7.  The second stage handles complex words, including collocations such as “set up” and 

“joint venture,” as well as proper names such as “Bridgestone Sports Co.” These are 

recognized by a combination of lexical entries and finite- state grammar rules.  

8.  The third stage handles basic groups, meaning noun groups and verb groups. The idea 

is to chunk these into units that will be managed by the later stages.  

9.  The fourth stage combines the basic groups into complex phrases. Again, the aim is to 

have rules that are finite- state and thus can be processed quickly, and that result in 
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unambiguous (or nearly unambiguous) output phrases. One type of combination rule 

deals with domain-specific events.  

10.  The final stage merges structures that were built up in the previous step. If the next 

sentence says “The joint venture will start production in January,” then this step will 

notice that there are two references to a joint venture, and that they should be merged 

into one. This is an instance of the identity uncertainty problem.  

5.14 PROBABILISTIC MODELS FOR INFORMATION EXTRACTION  

1.  The simplest probabilistic model for sequences with hidden state is the hidden Markov 

model, or HMM.  

2.  HMMs have two big advantages over FSAs for extraction.  

• First, HMMs are probabilistic, and thus tolerant to noise. In a regular expression, if a 

single expected character is missing, the regex fails to match; with HMMs there is 

graceful degradation with missing characters/words, and we get a probability indicating 

the degree of match, not just a Boolean match/fail.  

• Second, HMMs can be trained from data; they don’t require laborious engineering of 

templates, and thus they can more easily be kept up to date as text changes over time. 

 

Figure 5.2 Hidden Markov model for the speaker of a talk 

announcement. The two square states are the target (note the second 

target state has a self-loop, so the target can match a strain of any 

length), the four circles to the left are prefix, and the one of the right is 

the postfix. For each state, only a few of the high-probability words are 

shown. From Freitag and McCallum (2000) 

3.  Once the HMMs have been learned, we can apply them to a text, using the Viterbi 

algorithm to find the most likely  path through the HMM states. One approach is to 

apply each attribute HMM separately; in this case you would expect  most of the HMMs 

to spend most of their time in background states. This is appropriate when the extraction 

is  sparse - when the number of extracted words is small compared to the length of the 

text.  
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4.  The other approach is to combine all the individual attributes into one big HMM, which 

would then find a path that  wanders through different target attributes, first finding a 

speaker target, then a date target, etc. Separate HMMs are  better when we expect just 

one of each attribute in a text and one big HMM is better when the texts are more free- 

form and dense with attributes.  

5.  HMMs have the advantage of supplying probability numbers that can help make the 

choice. If some targets are missing, we need to decide if this is an instance of the desired 

relation at all, or if the targets found are false positives. A machine learning algorithm 

can be trained to make this choice. 

5.15 ONTOLOGY EXTRACTION FROM LARGE CORPORA 

1.  A different application of extraction technology is building a large knowledge base or 

ontology of facts from a corpus. This is different in three ways:  

• First it is open-ended—we want to acquire facts about all types of domains, not just one 

specific domain.  

• Second, with a large corpus, this task is dominated by precision, not recall—just as with 

question answering on the Web  

• Third, the results can be statistical aggregates gathered from multiple sources, rather 

than being extracted from one specific text.  

2.  Here is one of the most productive templates: NP such as NP (, NP)* (,)? ((and | or) 

NP)?. 

3.  Here the bold words and commas must appear literally in the text, but the parentheses 

are for grouping, the asterisk means repetition of zero or more, and the question mark 

means optional.  

4.  NP is a variable standing for a noun phrase  

5.  This template matches the texts “diseases such as rabies affect your dog” and “supports 

network protocols such as DNS,” concluding that rabies is a disease and DNS is a 

network protocol.  

6.  Similar templates can be constructed with the key words “including,” “especially,” and 

“or other.” Of course these templates will fail to match many relevant passages, like 

“Rabies is a disease.” That is intentional.  

7.  The “NP is a NP” template does indeed sometimes denote a subcategory relation, but 

it often means something else, as in “There is a God” or “She is a little tired.” With a 

large corpus we can afford to be picky; to use only the high-precision templates.  

8.  We’ll miss many statements of a subcategory relationship, but most likely we’ll find a 

paraphrase of the statement somewhere else in the corpus in a form we can use.  
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5.16 AUTOMATED TEMPLATE CONSTRUCTION  

Clearly these are examples of the author–title relation, but the learning system had no 

knowledge of authors or titles. The words in these examples were used in a search over a Web 

corpus, resulting in 199 matches. Each match is defined as a tuple of seven strings, (Author, 

Title, Order, Prefix, Middle, Postfix, URL), where Order is true if the author came first and 

false if the title came first, Middle is the characters between the author and title, Prefix is the 

10 characters before the match, Suffix is the 10 characters after the match, and URL is the Web 

address where the match was made.  

1.  Each template has the same seven components as a match.  

2.  The Author and Title are regexes consisting of any characters (but beginning and ending 

in letters) and constrained to have a length from half the minimum length of the 

examples to twice the maximum length.  

3.  The prefix, middle, and postfix are restricted to literal strings, not regexes.  

4.  The middle is the easiest to learn: each distinct middle string in the set of matches is a 

distinct candidate template. For each such candidate, the template’s Prefix is then 

defined as the longest common suffix of all the prefixes in the matches, and the Postfix 

is defined as the longest common prefix of all the postfixes in the matches.  

5.  If either of these is of length zero, then the template is rejected.  

6.  The URL of the template is defined as the longest prefix of the URLs in the matches.  

The biggest weakness in this approach is the sensitivity to noise. If one of the first few 

templates is incorrect, errors can propagate quickly. One way to limit this problem is to 

not accept a new example unless it is verified by multiple templates, and not accept a 

new template unless it discovers multiple examples that are also found by other 

templates.  

5.17 MACHINE READING  

1.  Traditional information extraction system that is targeted at a few relations and more 

like a human reader who learns from the text itself; because of this the field has been 

called machine reading.  

2.  A representative machine-reading system is TEXTRUNNER. TEXTRUNNER uses 

cotraining to boost its performance, but it needs something to bootstrap from.  

3.  Because TEXTRUNNER is domain-independent, it cannot rely on predefined lists of 

nouns and verbs. 
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Figure 5.3 Eight general templates that cover about 95% of the ways that 

relations are expressed in English 

  

TEXTRUNNER achieves a precision of 88% and recall of 45% (F1 of 60%) on a large 

Web corpus. TEXTRUNNER has extracted hundreds of millions of facts from a corpus of half-

billion Web pages. 

5.18 NATURAL LANGUAGE PROCESSING  

 Machine translation, sometimes referred to by the abbreviation MT (not to be confused 

with computer-aided translation, machine-aided human translation (MAHT) or interactive 

translation) is a sub-field of computational linguistics that investigates the use of software to 

translate text or speech from one language to another. 

 On a basic level, MT performs simple substitution of words in one language for words 

in another, but that alone usually cannot produce a good translation of a text because 

recognition of whole phrases and their closest counterparts in the target language is needed. 

Solving this problem with corpus statistical, and neural techniques is a rapidly growing field 

that is leading to better translations, handling differences in linguistic typology, translation of 

idioms and the isolation of anomalies. 

MACHINE TRANSLATION SYSTEMS 

 All translation systems must model the source and target languages, but systems vary 

in the type of models they use. Some systems, attempt to analyse the sourced language text all 

the way in to an interlingua knowledge representation and then generate sentences in the target 

language from that representation. This is difficult because it involves three unsolved problems: 

creating a complete knowledge representation of everything; parsing into that representation; 

and generating sentences from that representation. Other systems are based on a transfer model. 
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Figure 5.4 The Vauquois triangle: schematic diagram of the choice for a machine 

translation system (Vauquois, 1968). We start with English test as the top. An 

interlingua-based system follows the solid lines, pursuing English first into a syntactic 

form, then into a semantic representation and an interlingua representation, and then 

through generation to a semantic, syntactic and lexical form in French. A transfer-

based  system uses the dashed lines as a shortcut. Different systems make the transfer 

at different points: some make it at multiple points. 

 

STATISTICAL MACHINE TRANSLATION 

1. Find parallel texts: First, gather a parallel bilingual corpus. For example, a Hansard 

is a record of parliamentary debate. Canada, Hong Kong, and other countries produce 

bilingual Hansards, the European Union publishes its official documents in 11 

languages, and the United Nations publishes multilingual documents. Bilingual text is 

also available online; some Web sites publish parallel content with parallel URLs, for 

example, /en/ for the English page and /fr/ for the corresponding French page. The 

leading statistical translation systems train on hundreds of millions of words of parallel 

text and billions of words of monolingual text. 

2. Segment into sentences: The unit of translation is a sentence, so we will have to break 

the corpus into sentences. Periods are strong indicators of the end of a sentences, but 

consider “Dr. J.R. Smith of Rodeo Dr. PAD $ 29.99 ON 9.9.09”; only the final period 

ends a sentence. One way to decide if a period ends a sentence is to train a model that 

takes as features the surrounding words and their parts of speech. This approach 

achieves about 98% accuracy. 

3. Align sentences: For each sentence in the En1glish version, determine what sentence(s) 

it corresponds to in the French version. Usually, the next sentence of English 

corresponds to the next sentence of French in a 1:1 match, but sometimes there is 

variation: one sentence in one language will be split into a 2:1 match, or the order of 

two sentences will be swapped, resulting in a 2:2 match. By looking at the sentence 

lengths alone (i.e. short sentences should align with short sentences), it is possible to 

align (1:1, 1:2, or 2;2, etc) with accuracy in the 90% to 99% range using a variation on 

the Viterbi algorithm. 
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4. Align phrases: Within a sentence, phrases can be aligned by a process that is similar 

to that used for sentence alignment, but requiring iterative improvement. When we start, 

we have no way of knowing that “qui dort” aligns with “sleeping”, but we can arrive at 

that alignment by a process of aggregation of evidence. 

5. Extract distortions: Once we have an alignment of phrases, we can define distortion 

probabilities. Simply count how often distortion occurs in the corpus for each distance. 

6. Improve estimates with EM: Use expectation – maximization to improve the estimate 

of P(f|e) and P(d) values. We compute the best alignments with the current values of 

these parameters in the E step, then update the estimates in the M step and iterate the 

process until convergence. 

SPEECH RECOGNITION 

 Definition: Speech recognition is the task of identifying a sequence of SPEECH words 

uttered by a speaker, given the acoustic signal. It has become one of the mainstream 

applications of AI. 

1. Example:  The phrase “recognize speech” sounds almost the same as “wreak a nice 

beach” when spoken quickly. Even this short example shows several of the issues that 

make speech problematic. 

2. First segmentation: written words in English have spaces between them, but in fast 

speech there are no pauses in “wreck a nice” that would distinguish it as a multiword 

phrase as opposed to the single word “recognize”. 

3. Second, coarticulation: when speaking quickly the “s” sound at the end of “nice” 

merges with the “b” sound at the beginning of “beach” yielding something that is close 

to a “sp”. Another problem that does not show up in this example is homophones – 

words like “to”, “too” and “two” that sound the same but differe in meaning 

 argmax P(word1:t | sound1:t) = argmax P(sound1:t | word1:t) P(word1:t). 

   word1:t  word1:t 

 Heere P (sound1:t |sound1:t) is the acrostic model. It describes the sound of words – that 

“ceiling” begins with a soft “c” and sounds the same as “sealing”. P (word1:t) is known 

as the language model. It specifies the prior probability of each utterance – for 

example, that “ceiling fan” is about 500 times more likely as a word sequence than 

“sealing fan”. 

4. Once we define the acoustic and language models, we can solve for the most likely 

sequence of words using the Viterbi algorithm. 

Acoustic Model 
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1. An analog-to-digital converter measures the size of the current – which approximates 

the amplitude of the sound wave at discrete intervals called as sampling rate. 

2. The precision of each measurement is determined by the quantization factor, speech 

recognizers typically keep 8 to 12 bits. That means that a low-end system, sampling at 

8 kHz with 8-bit quantization, would require nearly half a megabyte per minute of 

speech. 

3. A phoneme is the smallest unit of sound that has a distinct meaning to speakers of a 

particular language.  

For example the “t” in “stick” sounds similar enough to the “t” in “tick” that speakers 

of English consider them the same phoneme. 

Each frame is summarized by a vector of features. Below picture represents phone 

model. 

 

Figure 5.5  Translating the acoustic signal into a sequence of frames. In this 

diagram each frame is described by the discretized values of three acoustic 

features; a real system would have dozens of features 

 

Building a speech recognizer 

1. The quality of a speech recognition system depends on the quality of all of its 

components – the language model, the word-pronunciation models, the phone models, 

and the signal processing algorithms used to extract spectral features from the acoustic 

signals. 

2. The systems with the highest accuracy work by training a different models for each 

speaker, thereby capturing differences in dialect as well as male / female and other 

variations. This training can require several hours of interaction with the speaker, so the 

systems with the most widespread adoption do not create speaker-specific models. 

3. The accuracy of a system depends on a number of factors. First, the quality of the signal 

matters: a high-quality directional microphone aimed at a stationary mouth in a padded 

room will do much better than a cheap microphone transmitting a signal over phone 

lines from a car in traffic with the radio playing. The vocabulary size matters: when 
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recognizing digit strings with a vocabulary of 11 words (1-9 plus “oh” and “zero)”, the 

word  error rate will be below 0.5%, where as it rises to about 10% on news stories with 

a 20,000-word vocabulary, and 20% on a corpus with a 64,000-word vocabulary. The 

task matters too: when the system is trying to accomplish a specific task – book a flight 

or give directions to a restaurant – the task can often be a accomplished perfectly even 

with a word error rate of 109% or more. 

 

Figure 5.6A schematic diagram of the choices for a machine translation system. 

We start with English text at the top. An interlingua-based system follows the 

solid lines, parsing English first into a syntactic form, then into a semantic 

representation and an interlingua representation, and then through generation 

to a semantic, syntactic, and lexical form in French. A transfer-based system 

uses the dashed lines as a shortcut. Different systems make the transfer at 

different points; some it at multiple points. 

 

5.19 ROBOT  

1.  Robots are physical agents that perform tasks by manipulating the physical world.  

2.  To do so, they are equipped with effectors such as legs, wheels, joints, and grippers.  

3.  Effectors have a single purpose: to assert physical forces on the environment.  

4.  Robots are also equipped with sensors, which allow them to perceive their environment.  

5.  Present day robotics employs a diverse set of sensors, including cameras and lasers to 

measure the environment, and gyroscopes and accelerometers to measure the robot’s 

own motion.  

6.  Most of today’s robots fall into one of three primary categories. Manipulators, or robot 

arms are physically anchored to their workplace, for example in a factory assembly line 

or on the International Space Station.  

Robot Hardware  
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1.  Sensors are the perceptual interface between robot and environment. 

2.  Passive sensors, such as cameras, are true observers of the environment: they capture 

signals that are generated by other sources in the environment.  

3.  Active sensors, such as sonar, send energy into the environment. They rely on the fact 

that this energy is reflected back to the sensor. Active sensors tend to provide more 

information than passive sensors, but at the expense of increased power consumption 

and with a danger of interference when multiple active sensors are used at the same 

time. Whether active or passive, sensors can be divided into three types, depending on 

whether they sense the environment, the robot’s location, or the robot’s internal 

configuration.  

4.  Range finders are sensors that measure the distance to nearby objects. In the early days 

of robotics, robots were commonly equipped with sonar sensors. Sonar sensors emit 

directional sound waves, which are reflected by objects, with some of the sound making 

it.  

5.  Stereo vision relies on multiple cameras to image the environment from slightly 

different viewpoints, analyzing the resulting parallax in these images to compute the 

range of surrounding objects. For mobile ground robots, sonar and stereo vision are 

now rarely used, because they are not reliably accurate.  

6.  Other range sensors use laser beams and special 1-pixel cameras that can be directed 

using complex arrangements of mirrors or rotating elements. These sensors are called 

scanning lidars (short for light detection and ranging). 

 7.  Other common range sensors include radar, which is often the sensor of choice for 

UAVs. Radar sensors can measure distances of multiple kilometers. On the other 

extreme end of range sensing are tactile sensors such as whiskers, bump panels, and 

touch-sensitive skin. These sensors measure range based on physical contact, and can 

be deployed only for sensing objects very close to the robot.  

8.  A second important class of sensors is location sensors. Most location sensors use range 

sensing as a primary component to determine location. Outdoors, the Global 

Positioning System (GPS) is the most common solution to the localization problem.  

9.  The third important class is proprioceptive sensors, which inform the robot of its own 

motion. To measure the exact configuration of a robotic joint, motors are often equipped 

with shaft decoders that count the revolution of motors in small increments. 

 10.  Inertial sensors, such as gyroscopes, rely on the resistance of mass to the change of 

velocity. They can help reduce uncertainty.  
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11.  Other important aspects of robot state are measured by force sensors and torque sensors. 

These are indispensable when robots handle fragile objects or objects whose exact 

shape and location is unknown.  

Robotic Perception  

1.  Perception is the process by which robots map sensor measurements into internal 

representations of the environment. Perception is difficult because sensors are noisy, 

and the environment is partially observable, unpredictable, and often dynamic. In other 

words, robots have all the problems of state estimation (or filtering)  

2. As a rule of thumb, good internal representations for robots have three properties: they 

contain enough information for the robot to make good decisions, they are structured 

so that they can be updated efficiently, and they are natural in the sense that internal 

variables correspond to natural state variables in the physical world. 

 

Figure 5.7 Robot perception can be viewed as temporal inference from 

sequence of actions and measurements, as illustrated by this dynamic Bayers 

network 

 

2.  Another machine learning technique enables robots to continuously adapt to broad 

changes in sensor measurements.  

3.  Adaptive perception techniques enable robots to adjust to such changes. Methods that 

make robots collect their own training data (with labels!) are called self-supervised. In 

this instance, the robot machine learning to leverage a short-range sensor that works 

well for terrain classification into a sensor that can see much farther.  

5.20 PLANNING TO MOVE  

1.  All of a robot’s deliberations ultimately come down to deciding how to move effectors. 

2.  The point-to-point motion problem is to deliver the robot or its end effector to a 

designated target location.  

3.  A greater challenge is the compliant motion problem, in which a robot moves while 

being in physical contact with an obstacle. 

4.  An example of compliant motion is a robot manipulator that screws in a light bulb, or 

a robot that pushes a box across a table top. We begin by finding a suitable 

representation in which motion-planning problems can be described and solved. It turns 
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out that the configuration space—the space of robot states defined by location, 

orientation, and joint angles—is a better place to work than the original 3D space.  

5.  The path planning problem is to find a path from one configuration to another in 

configuration space. We have already encountered various versions of the path-

planning problem throughout this book; the complication added by robotics is that path 

planning involves continuous spaces. T  

6.  Here are two main approaches: cell decomposition and skeletonization. Each reduces 

the continuous path- planning problem to a discrete graph-search problem. In this 

section, we assume that motion is deterministic and that localization of the robot is 

exact. Subsequent sections will relax these assumptions. 

7.  The second major family of path-planning algorithms is based on the idea of 

skeletonization. These algorithms reduce the robot’s free space to a one-dimensional 

representation, for which the planning problem is easier. This lower-dimensional 

representation is called a skeleton of the configuration space.  

5.20.1 Configuration Space  

1.  It has two joints that move independently. Moving the joints alters the (x, y) coordinates 

of the elbow and the gripper. (The arm cannot move in the z direction.) This suggests 

that the robot’s configuration can be described by a four-dimensional coordinate: (xe, 

ye) for the location of the elbow relative to the environment and (xg, yg) for the location 

of the gripper. Clearly, these four coordinates characterize the full state of the robot. 

They constitute what is known as workspace representation.  

2.  Configuration spaces have their own problems. The task of a robot is usually expressed 

in workspace coordinates, not in configuration space coordinates. This raises the 

question of how to map between workspace coordinates and configuration space.  

3. These transformations are linear for prismatic joints and trigonometric for revolute 

joints. This chain of coordinate transformation is known as kinematics.  

4.  The inverse problem of calculating the configuration of a robot whose effector location 

is specified in workspace coordinates is known as inverse kinematics.  

The configuration space can be decomposed into two subspaces: the space of all 

configurations that a robot may attain, commonly called free space, and the space of 

unattainable configurations, called occupied space.  

 

5.20.2 Cell Decomposition Methods  

1.  The simplest cell decomposition consists of a regularly spaced grid.  
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2.  Grayscale shading indicates the value of each free-space grid cell—i.e., the cost of the 

shortest path from that cell to the goal.  

3.  Cell decomposition methods can be improved in a number of ways, to alleviate some 

of these problems. The first approach allows further subdivision of the mixed cells—

perhaps using cells of half the original size. This can be continued recursively until a 

path is found that lies entirely within free cells. (Of course, the method only works if 

there is a way to decide if a given cell is a mixed cell, which is easy only if the 

configuration space boundaries  

4.  Have relatively simple mathematical descriptions.) This method is complete provided 

there is a bound on the smallest passageway through which a solution must pass. One 

HYBRID A* algorithm that implements this is hybrid A*. 

5.20.3 Modified Cost Functions 

1. A potential field is a function defined over state space, whose value grows with the 

distance to the closet obstacle. 

2. The potential field can be used as an additional cost term in the shortest-path 

calculation. 

3. This induces an interesting trade off. On the one hand, the robot seeks to minimize path 

length to the goal. On the other hand, it tries to stay away from obstacles by virtue to 

minimizing the potential function. 

4. There exist many other ways to modify the cost function. For example, it may be 

desirable to smooth the control parameters over time. 

5.20.4 Skeletonization methods 

1. The second major family of path-planning algorithms is based on the idea of 

skeletonization. 

2. These algorithms reduce the robot’s free space to a one-dimensional representation, for 

which the planning problem is easier. 

3. This lower-dimensional representation is called a skeleton of the configuration space. 

4. It is  a Voronoi graph of the free space -  the set of all points that are equidistant to two 

or more obstacles. To do path planning with a Voronoi graph, the robot first changes 

its present configuration to a point on the Voronoi graph. 

5. It is easy to show that this can always be achieved by a straight-line motion in 

configuration space. Second, the robot follows the Voronoi graph until it reaches the 

point nearest to the target configuration. Finally, the robot leaves the Voronoi graph 



175 

and moves to the target. Again, this final step involves straight-line motion in 

configuration space. 

 

Figure 5.8(a) A repelling potential field pushes the robot away from 

obstacles, (b) Path found by simultaneously minimizing path length and 

the potential 

 

 

Figure 5.9 (a) The Voronoi graph is the set of points equidistance to two 

or more obstacles in configuration space (b) A probabilistic moodmap, 

composed of 100 randomly chosen points in free space. 

 

Robust methods 

1. A robust method is one that assumes a bounded amount of uncertainty in each aspect 

of a problem, but does not assign probabilities to values within the allowed interval. 

2. A robust solution is one that works no matter what actual values occur, provided they 

are within the assumed intervals. 

3. An extreme form of robust method is the conformant planning approach. 
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Figure 5.10A two-dimensional environment, velocity uncertainty cone, 

and envelope of possible robot motions. The intended velocity is , but 

with uncertainty the actual velocity could be anywhere in C, resulting in 

a final configuration somewhere in the motion envelope, which means we 

wouldn’t know if we hit the hole or not 

 

 

Figure 5.11The first motion command and the resulting envelope of 

possible robot motions. No matter what the error, we know the final 

configuration will be to the left of the hole 

 

Define Speech Recognition. Explain different types of speech recognition systems. 

Speech recognition is an interdisciplinary subfield of computer science and 

computational linguistics that develops methodologies and technologies that enable the 

recognition and translation of spoken language into text by computers. It is also known as 

automatic speech recognition (ASR), computer speech recognition or speech to text (STT). 

Speech recognition is the process by which computer maps an acoustic speech signal to some 

form of abstract meaning of the speech. The fundamental aspect of speech recognition is the 

translation of sound into text and commands. 

This process is highly difficult since sound has to be matched with stored sound bites 

on which further analysis has to be done because sound bites do not match with pre-existing 

sound pieces. Feature extraction technique and pattern matching techniques plays important 

role in speech recognition system to maximize the rate of speech recognition of various 

persons.  

Types of speech recognition system based on utterances  

1.  Isolated Words Isolated word recognition system which recognizes single utterances 

i.e. single word. Isolated word recognition is suitable for situations where the  

user is required to give only one word response or commands. It is simple and easiest 

for implementation because word boundaries are obvious and the words tend to be 

clearly pronounced which is the major advantage of this type. Eg. Yes/No, Listen / Not-

Listen  

2.  Connected Words A connected words system is similar to isolated words, but it allows 

separate utterances to be - run-together‟ with a minimal pause between them.  
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Utterance is the vocalization of a word or words that represent a single  

meaning to the computer. Eg. drive car(action + object), baby book(agent + object) \ 

3.  Continuous Speech Continuous speech recognition system allows users to speak almost  

naturally, while the computer determines its content. Continuous speech recognition 

system is difficult to develop. Eg. dictation 

4.  Spontaneous Speech Spontaneous speech recognition system recognizes the natural 

speech. Spontaneous speech is natural that comes suddenly through mouth. An  

ASR system with spontaneous speech is able to handle a variety of natural  

speech features such as words being run together. Spontaneous speech may  

include mispronunciation, false-starts and non words. Eg. Spontaneous speech may 

include mispronunciation, false-starts (will you – will you go to your college?) and non 

words("ums"). 

Explain about Automatic Speech Recognition System  

Speech recognition is an interdisciplinary subfield of computer science and 

computational linguistics that develops methodologies and technologies that enable the 

recognition and translation of spoken language into text by computers. It is also known as 

automatic speech recognition (ASR), computer speech recognition or speech to text (STT). 

 

Figure 5.12 System Architecture of for Automatic Speech Recognition System 

 

Pre-processing/Digital Processing The recorded acoustic signal is an analog signal. An 

analog signal cannot directly transfer to the ASR systems. So these speech signals need to 

transform in the form of digital signals and then only they can be processed. These digital 

signals are move to the first order filters to spectrally flatten the signals. This procedure 

increases the energy of signal at higher frequency.  

Feature Extraction Feature extraction step finds the set of parameters of utterances that 

have acoustic correlation with speech signals and these parameters are computed through 

processing of the acoustic waveform. These parameters are known as features or feature vectors 

(x₁, x₂, x₃, ...). The main focus of feature extractor is to keep the relevant information and 
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discard irrelevant one. Feature extractor divides the acoustic signal into 10-25 ms. Data 

acquired in these frames is multiplied by window function. There are many types of  

window functions that can be used such as hamming Rectangular, Blackman, Welch or 

Gaussian etc. Feature extraction methods: Principal component Analysis (PCA), Linear 

Discriminate Analysis (LDA), Wavelet, Independent component Analysis(ICA) etc. 
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