

Simple model of Neural Network – The Perceptron

The perceptron learning algorithm is the simplest model of a neuron that illustrates how a neural network works. The perceptron is a machine learning algorithm developed in 1957 by Frank Rosenblatt and first implemented in IBM 704.

/ision Title 3

Perceptron formulae

$$y_in = b + \sum_{i} x_i w_i;$$

$$y = \begin{cases} 1 & \text{if } y_in > \theta \\ 0 & \text{if } -\theta \le y_in \le \theta \\ -1 & \text{if } y_in < -\theta \end{cases}$$

$$w_i(\text{new}) = w_i(\text{old}) + \hat{\alpha} t_i,$$

 $b(\text{new}) = b(\text{old}) + \hat{\alpha} t.$

• $\Delta w = t(x_1, x_2, 1)$

Perceptron

• A Perceptron for the AND function: Binary inputs, bipolar targets

Solution

- Initializing $\alpha = 1$; w₁,w₂,b=0 and considering $\theta = 0.2$
- The weight change is Δw = t(x₁,x₂,1) if an error has occurred and zero otherwise

• Presenting the first input we have,

and

$$x_1 + x_2 + 1 = -.2.$$

Decision boundary for logic function AND after first training input

• Presenting the second input yields the following,

INPUT		NET	OUT	TARGET	WEIGHT CHANGES	w	WEIGHTS			
(<i>x</i> 1	<i>x</i> ₂	1)					(w ₁	w ₂	b)	
(1	0	1)	2	1	- 1	(-1 0 -1)) (0	Ð	1) 0)	

The separating lines become

$$x_2 = .2$$

and

$$x_2 = -.2$$

• Decision boundary after second training input,

• For the third input we have,

INPUT		NET	Ουτ	TARGET	WEIGHT CHANGES			WEIGHTS			
$(x_1$	<i>x</i> ₂	1)							(w ₁	w_2	b)
					. •				(0	1	0)
(0	1	1)/	1	1	-1	(0	-1	-1)	(0	0	-1)

• For fourth input pattern of first epoch,

INPUT		NET	OUT	TARGET	WI CH	EIGHT ANGES	v	WEIGHTS			
$(x_1$	x_2	1)						(w ₁	w_2	<i>b</i>)	
								(0	0	-1)	
(0	0	1)	-1	-1	-1	(0	0 -(0)	(0	0	-1)	

 Response of all of the input pattern is negative for the weight derived but since the response for input pattern (1,1) is incorrect, we are not finished • The second epoch of training yields the following weight updates for the first input:

INPUT		NET	OUT	TARGET	WEIGHT CHANGES			WEIGHTS				
$(x_1$	x_2	1)	<i>x</i> ² 1)							(w ₁	w2	b)
									(0	0	- 1)	
(1	1	1)	-1	-1	1	(1	1	1)	(1	1	0)	

The separating lines become

 $x_1 + x_2 = .2$

and

 $x_1 + x_2 = -.2.$

 Boundary after first training input of second epoch,

• For the second input in second epoch,

INPUTNETOUTTARGETWEIGHT
CHANGESWEIGHTS $(x_1 \ x_2 \ 1)$ $(x_1 \ x_2 \ 1)$ $(w_1 \ w_2 \ b)$
 $(1 \ 1 \ 0)$ $(1 \ 1 \ 0)$ $(1 \ 0 \ 1)$ 11-1 $(-1 \ 0 \ -1)$ $(0 \ 1 \ -1)$

The separating lines become

.

$$x_2 - 1 = .2$$

and

 $x_2 - 1 = -.2$.

• Boundary after second input of second epoch,

• In the second epoch, the third input yields:

INPUT		NET	ουτ	TARGET	WEIGH CHANG	IT ES	WEIGHTS			
$(x_1$	<i>x</i> ₂	1)						(w ₁	w2	<i>b</i>)
								(0	1	-1)
(0	1	1)	0	0	-1	(0 - 1	-1)	(0	0	-2)

• To complete the second epoch of training, we present the fourth training pattern:

INPUT			Ουτ	TARGET	WEIGHTS CHANGE			W	WEIGHTS			
(x ₁	<i>x</i> ₂	1)	-						(w ₁	w ₂	b)	
(0	0	n	_2	_ 1	_ 1	(0)	0	0	(0	0	-2)	

• The result of third epoch will be,

INPUT		NET	OUT	TARGET	C	WEIGH HANGI	T ES	w	EIG	ITS	
(x ₁	<i>x</i> ₂	1)		ų.	-1	Duri	∆ω;	>	(w ₁ (0	w_2	b) -2)
(1 (1 (0 (0		1) 1) 1) 1)	-2 0 -1 -2	-1 0 -1 -1	-1 -1 -1	(1 (-1 (0 (0	1 0 ~70 0	1) -1) 0) 0)	(1 (0 (0 (0	1 1 1 1	-1) -2) -2) -2)

The results for the fourth epoch are:

(1	I	1)	-1	-1	1	´(1	1	1)	(1	2	-1)
(1	0	1)	0	0	-1	(-1	0	-1)	(0	2	-2)
(0	1	1)	0	0	-1	(0	-1	- 1)	(0	1	-3)
(0	0	1)	-3	-1	-1	(0	0	0)	(0	1	° − 3)

l .

Finally, the results for the tenth epoch are:

			net	Ý	セ		1				
(1	1	1)	1	1	1	(0	0	0)	(2	3	-4)
(1	0	1)	-2	- 1	-1	(0	0	0)	(2	3	-4)
(0	1	1)	- 1	-1	-1	(0	0	0)	(2	3	-4)
(0	0	1)	-4	- 1	-1	(0	0	0)	(2	3	-4)

Thus, the positive response is given by all points such that

$$2x_1 + 3x_2 - 4 > .2,$$

with boundary line

$$x_2 = -\frac{2}{3}x_1 + \frac{7}{5},$$

and the negative response is given by all points such that

$$2x_1 + 3x_2 - 4 < -.2,$$

with boundary line

$$x_2 = -\frac{2}{3}x_1 + \frac{19}{15}$$

 Final decision boundaries for AND function in perceptron learning

