

Unit I - Relational Model

Relational Data Model - keys, referential integrity and foreign keys, Relational Algebra - SQL fundamentals- Introduction, data definition in SQL, table, key and foreign key definitions, update behaviors-Intermediate SQL-Advanced SQL features -Embedded SQL- Dynamic SQL, CASE Studies- Oracle: Database Design and Querying Tools; SQL Variations and Extensions

Joined Relations

- Join operations take two relations and return as a result another relation.
- A join operation is a Cartesian product which requires that tuples in the two relations match (under some condition). It also specifies the attributes that are present in the result of the join
- The join operations are typically used as subquery expressions in the **from** clause
- Three types of joins:
 - Natural join
 - Inner join
 - Outer join

Natural Join in SQL

- Natural join matches tuples with the same values for all common attributes, and retains only one copy of each common column.
- List the names of instructors along with the course ID of the courses that they taught
 - select name, course_id
 from students, takes
 where student.ID = takes.ID;
- Same query in SQL with "natural join" construct
 - select name, course_id
 from student natural join takes;

Natural Join in SQL (Cont.)

 The from clause can have multiple relations combined using natural join:

select $A_1, A_2, \dots A_n$

from r_1 natural join r_2 natural join .. natural join r_n where P;

Student Relation

ID	name	dept_name	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110
44553	Peltier	Physics	56
45678	Levy	Physics	46
54321	Williams	Comp. Sci.	54
55739	Sanchez	Music	38
70557	Snow	Physics	0
76543	Brown	Comp. Sci.	58
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98
98988	Tanaka	Biology	120

Takes Relation

ID	course_id	sec_id	semester	year	grade
00128	CS-101	Ī	Fall	2017	A
00128	CS-347	1	Fall	2017	A-
12345	CS-101	1	Fall	2017	С
12345	CS-190	2	Spring	2017	A
12345	CS-315	1	Spring	2018	A
12345	CS-347	1	Fall	2017	A
19991	HIS-351	1	Spring	2018	В
23121	FIN-201	1	Spring	2018	C+
44553	PHY-101	1	Fal1	2017	B-
45678	CS-101	1	Fall	2017	F
45678	CS-101	1	Spring	2018	B+
45678	CS-319	1	Spring	2018	В
54321	CS-101	1	Fall	2017	A-
54321	CS-190	2	Spring	2017	B+
55739	MU-199	1	Spring	2018	A-
76543	CS-101	1	Fall	2017	A
76543	CS-319	2	Spring	2018	A
76653	EE-181	1	Spring	2017	С
98765	CS-101	1	Fall	2017	C-
98765	CS-315	1	Spring	2018	В
98988	BIO-101	1	Summer	2017	A
98988	BIO-301	1	Summer	2018	null

student natural join takes

ID	name	dept_name	tot_cred	course_id	sec_id	semester	year	grade
00128	Zhang	Comp. Sci.	102	CS-101	1	Fa11	2017	A
00128	Zhang	Comp. Sci.	102	CS-347	1	Fall	2017	A-
12345	Shankar	Comp. Sci.	32	CS-101	1	Fall	2017	C
12345	Shankar	Comp. Sci.	32	CS-190	2	Spring	2017	A
12345	Shankar	Comp. Sci.	32	CS-315	1	Spring	2018	A
12345	Shankar	Comp. Sci.	32	CS-347	1	Fall	2017	A
19991	Brandt	History	80	HIS-351	1	Spring	2018	В
23121	Chavez	Finance	110	FIN-201	1	Spring	2018	C+
44553	Peltier	Physics	56	PHY-101	1	Fall	2017	B-
45678	Levy	Physics	46	CS-101	1	Fall	2017	F
45678	Levy	Physics	46	CS-101	1	Spring	2018	B+
45678	Levy	Physics	46	CS-319	1	Spring	2018	В
54321	Williams	Comp. Sci.	54	CS-101	1	Fall	2017	A-
54321	Williams	Comp. Sci.	54	CS-190	2	Spring	2017	B+
55739	Sanchez	Music	38	MU-199	1	Spring	2018	A-
76543	Brown	Comp. Sci.	58	CS-101	1	Fall	2017	A
76543	Brown	Comp. Sci.	58	CS-319	2	Spring	2018	A
76653	Aoi	Elec. Eng.	60	EE-181	1	Spring	2017	С
98765	Bourikas	Elec. Eng.	98	CS-101	1	Fall	2017	C-
98765	Bourikas	Elec. Eng.	98	CS-315	1	Spring	2018	В
98988	Tanaka	Biology	120	BIO-101	1	Summer	2017	A
98988	Tanaka	Biology	120	BIO-301	1	Summer	2018	null

Dangerous in Natural Join

- Beware of unrelated attributes with same name which get equated incorrectly
- Example -- List the names of students instructors along with the titles of courses that they have taken
 - Correct version

select name, title

from student natural join takes, course

where *takes.course_id* = *course.course_id*;

Incorrect version

select name, title

from student natural join takes natural join course;

- This query omits all (student name, course title) pairs where the student takes a course in a department other than the student's own department.
- The correct version (above), correctly outputs such pairs.

Natural Join with Using Clause

- To avoid the danger of equating attributes erroneously, we can use the "using" construct that allows us to specify exactly which columns should be equated.
- Query example

select name, title

from (student **natural join** takes) **join** course **using** (course_id)

Join Condition

- The **on** condition allows a general predicate over the relations being joined
- This predicate is written like a where clause predicate except for the use of the keyword on
- Query example

select *

Equivalent to:

select *

from student, takes

where *student_ID* = *takes_ID*

from student **join** takes **on** student_ID = takes_ID

• The **on** condition above specifies that a tuple from *student* matches a tuple from *takes* if their *ID* values are equal.

Join Condition (Cont.)

- The **on** condition allows a general predicate over the relations being joined.
- This predicate is written like a **where** clause predicate except for the use of the keyword **on**.
- Query example

select *

from student join takes on student_ID = takes_ID

- The **on** condition above specifies that a tuple from *student* matches a tuple from *takes* if their *ID* values are equal.
- Equivalent to:

```
select *
```

from student, takes

where *student_ID* = *takes_ID*

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* values.
- Three forms of outer join:
 - left outer join
 - right outer join
 - full outer join

Outer Join Examples

course_id	title	dept_name	credits
BIO-301	Genetics	Biology	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3

- Relation *course*
- Relation *prereq*
- Observe that

course_id	prereq_id
BIO-301	BIO-101
CS-190	CS-101
CS-347	CS-101

course information is missing CS-347

prereq information is missing CS-315

Left Outer Join

• course natural left outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190 CS-315	Game Design Robotics	Comp. Sci. Comp. Sci.		CS-101 null

■ In relational algebra: *course* ② *prereq*

Right Outer Join

• course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	200	CS-101
CS-347	null	null	null	CS-101

■ In relational algebra: *course* ② *prereq*

Full Outer Join

• course natural full outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190 CS-315	Game Design	- college and the configuration of the	133	CS-101 null
CS-313 CS-347	Robotics null	Comp. Sci. null	null	CS-101

• In relational algebra: course 2 prereq

Joined Types and Conditions

- **Join operations** take two relations and return as a result another relation.
- These additional operations are typically used as subquery expressions in the from clause
- **Join condition** defines which tuples in the two relations match.
- **Join type** defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join types
inner join
left outer join
right outer join
full outer join

Join conditions

natural

on < predicate >

using $(A_1, A_2, ..., A_n)$

Joined Relations - Examples

• course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

• course full outer join prereq using (course_id)

course_ia	l title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Joined Relations - Examples

course inner join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
	Genetics Game Design	Biology Comp. Sci.	15	BIO-101 CS-101	BIO-301 CS-190

- What is the difference between the above, and a natural join?
- course left outer join prereq on course.course_id = prereq.course_id

course_id	title	dept_name	credits	prereq_id	course_id
BIO-301		Biology	123	BIO-101	BIO-301
CS-190	Game Design	Comp. Sci.	4	CS-101	CS-190
CS-315	Robotics	Comp. Sci.	3	null	null

Joined Relations - Examples

• course natural right outer join prereq

course_id	title	dept_name	credits	prereq_id
WORKSBOARDE ARRYSTOSES	Genetics	Biology	103	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-347	null	null	null	CS-101

• course full outer join prereq using (course_id)

course_id	title	dept_name	credits	prereq_id
BIO-301	Genetics	Biology	4	BIO-101
CS-190	Game Design	Comp. Sci.	4	CS-101
CS-315	Robotics	Comp. Sci.	3	null
CS-347	null	null	null	CS-101

Views

- In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
- Consider a person who needs to know an instructors name and department, but not the salary. This person should see a relation described, in SQL, by

select *ID*, *name*, *dept_name* **from** instructor

- A **view** provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

28-02-2023

A view is defined using the create view statement which has the form
 create view v as < query expression >

where <query expression> is any legal SQL expression. The view name is represented by *v*.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

View Definition and Use

A view of instructors without their salary

create view faculty as

select ID, name, dept_name

from instructor

• Find all instructors in the Biology department

select name

from *faculty*

where dept_name = 'Biology'

View Definition and Use

• Create a view of department salary totals

create view departments_total_salary(dept_name, total_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v_1 is said to *depend directly* on a view relation v_2 if v_2 is used in the expression defining v_1
- A view relation v_1 is said to *depend on* view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
- A view relation v is said to be recursive if it depends on itself.

Views Defined Using Other Views

create view physics_fall_2017 as
 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = 'Physics'
 and section.semester = 'Fall'
 and section.year = '2017';

 create view physics_fall_2017_watson as select course_id, room_number from physics_fall_2017 where building= 'Watson';

View Expansion

• Expand the view:

create view physics_fall_2017_watson as
select course_id, room_number
from physics_fall_2017
where building= 'Watson'

• To:

```
create view physics_fall_2017_watson as
select course_id, room_number
from (select course.course_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics'
and section.semester = 'Fall'
and section.year = '2017')
where building= 'Watson';
```


View Expansion (Cont.)

- A way to define the meaning of views defined in terms of other views.
- Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1

Replace the view relation v_i by the expression defining v_i

until no more view relations are present in e_1

• As long as the view definitions are not recursive, this loop will terminate

Materialized Views

- Certain database systems allow view relations to be physically stored.
 - Physical copy created when the view is defined.
 - Such views are called **Materialized view**:
- If relations used in the query are updated, the materialized view result becomes out of date
 - Need to **maintain** the view, by updating the view whenever the underlying relations are updated.

Update of a View

• Add a new tuple to *faculty* view which we defined earlier

insert into *faculty*

values ('30765', 'Green', 'Music');

- This insertion must be represented by the insertion into the *instructor* relation
 - Must have a value for salary.
- Two approaches
 - Reject the insert
 - Insert the tuple

('30765', 'Green', 'Music', null)

into the *instructor* relation

Some Updates Cannot be Translated Uniquely

• create view instructor_info as

select ID, name, building

from instructor, department

where *instructor.dept_name* = *department.dept_name*;

• **insert into** *instructor_info*

values ('69987', 'White', 'Taylor');

- Issues
 - Which department, if multiple departments in Taylor?
 - What if no department is in Taylor?

And Some Not at All

create view history_instructors as

select *

from instructor

where dept_name= 'History';

What happens if we insert

('25566', 'Brown', 'Biology', 100000)

into *history_instructors?*

View Updates in SQL

- Most SQL implementations allow updates only on simple views
 - The **from** clause has only one database relation.
 - The select clause contains only attribute names of the relation, and does not have any expressions, aggregates, or distinct specification.
 - Any attribute not listed in the select clause can be set to null
 - The query does not have a group by or having clause.

S S INSTITUTIONS

Transactions 51

- A **transaction** consists of a sequence of query and/or update statements and is a "unit" of work
- The SQL standard specifies that a transaction begins implicitly when an SQL statement is executed.
- The transaction must end with one of the following statements:
 - **Commit work**. The updates performed by the transaction become permanent in the database.
 - Rollback work. All the updates performed by the SQL statements in the transaction are undone.
- Atomic transaction
 - either fully executed or rolled back as if it never occurred
- Isolation from concurrent transactions

Integrity Constraints

- Integrity constraints guard against accidental damage to the database, by ensuring that authorized changes to the database do not result in a loss of data consistency.
 - A checking account must have a balance greater than \$10,000.00
 - A salary of a bank employee must be at least \$4.00 an hour
 - A customer must have a (non-null) phone number

Constraints on a Single Relation

- not null
- primary key
- unique
- check (P), where P is a predicate

Not Null Constraints

not null

• Declare name and budget to be not null

name varchar(20) not null

budget numeric(12,2) not null

Unique Constraints

- unique $(A_1, A_2, ..., A_m)$
 - The unique specification states that the attributes $A_1, A_2, ..., A_{\rm m}$ form a candidate key.
 - Candidate keys are permitted to be null (in contrast to primary keys).

The check clause

- The check (P) clause specifies a predicate P that must be satisfied by every tuple in a relation.
- Example: ensure that semester is one of fall, winter, spring or summer

```
create table section

(course_id varchar (8),

sec_id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room_number varchar (7),

time slot id varchar (4),

primary key (course_id, sec_id, semester, year),

check (semester in ('Fall', 'Winter', 'Spring', 'Summer')))
```


Referential Integrity

- Ensures that a value that appears in one relation for a given set of attributes also appears for a certain set of attributes in another relation.
 - Example: If "Biology" is a department name appearing in one of the tuples in the *instructor* relation, then there exists a tuple in the *department* relation for "Biology".
- Let A be a set of attributes. Let R and S be two relations that contain attributes A and where A is the primary key of S. A is said to be a **foreign key** of R if for any values of A appearing in R these values also appear in S.

Referential Integrity (Cont.)

- Foreign keys can be specified as part of the SQL create table statement
 foreign key (dept_name) references department
- By default, a foreign key references the primary-key attributes of the referenced table.
- SQL allows a list of attributes of the referenced relation to be specified explicitly.

foreign key (dept_name) **references** department (dept_name)

Cascading Actions in Referential Integrity

- When a referential-integrity constraint is violated, the normal procedure is to reject the action that caused the violation.
- An alternative, in case of delete or update is to cascade

- Instead of cascade we can use :
 - set null,
 - set default

Integrity Constraint Violation During Transactions

• Consider:

```
create table person (

ID char(10),

name char(40),

mother char(10),

father char(10),

primary key ID,

foreign key father references person,

foreign key mother references person)
```

- How to insert a tuple without causing constraint violation?
 - Insert father and mother of a person before inserting person
 - OR, set father and mother to null initially, update after inserting all persons (not possible if father and mother attributes declared to be **not null**)
 - OR defer constraint checking

Complex Check Conditions

• The predicate in the check clause can be an arbitrary predicate that can include a subquery.

check (time_slot_id **in** (**select** time_slot_id **from** time_slot))

The check condition states that the time_slot_id in each tuple in the *section* relation is actually the identifier of a time slot in the *time_slot* relation.

• The condition has to be checked not only when a tuple is inserted or modified in *section*, but also when the relation *time_slot* changes

Assertions^{45/61}

- An **assertion** is a predicate expressing a condition that we wish the database always to satisfy.
- The following constraints, can be expressed using assertions:
- For each tuple in the *student* relation, the value of the attribute *tot_cred* must equal the sum of credits of courses that the student has completed successfully.
- An instructor cannot teach in two different classrooms in a semester in the same time slot
- An assertion in SQL takes the form:

create assertion <assertion-name> check (<predicate>);

Built-in Data Types in SQL

• date: Dates, containing a (4 digit) year, month and date

• Example: **date** '2005-7-27'

• time: Time of day, in hours, minutes and seconds.

• Example: **time** '09:00:30' **time** '09:00:30.75'

• timestamp: date plus time of day

• Example: **timestamp** '2005-7-27 09:00:30.75'

• interval: period of time

• Example: interval '1' day

Subtracting a date/time/timestamp value from another gives an interval value

Interval values can be added to date/time/timestamp values

- Large objects (photos, videos, CAD files, etc.) are stored as a *large object*:
 - **blob**: binary large object -- object is a large collection of uninterpreted binary data (whose interpretation is left to an application outside of the database system)
 - clob: character large object -- object is a large collection of character data
- When a query returns a large object, a pointer is returned rather than the large object itself.

User-Defined Types

• **create type** construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

• Example:

create table department (dept_name varchar (20), building varchar (15), budget Dollars);

Domains

• create domain construct in SQL-92 creates user-defined domain types

create domain person_name char(20) not null

- Types and domains are similar. Domains can have constraints, such as not null, specified on them.
- Example:

```
create domain degree_level varchar(10)
constraint degree_level_test
check (value in ('Bachelors', 'Masters', 'Doctorate'));
```

Index Creation 161

- Many queries reference only a small proportion of the records in a table.
- It is inefficient for the system to read every record to find a record with particular value
- An **index** on an attribute of a relation is a data structure that allows the database system to find those tuples in the relation that have a specified value for that attribute efficiently, without scanning through all the tuples of the relation.
- We create an index with the create index command
 create index <name> on <relation-name> (attribute);

Index Creation Example

```
• create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))
```

- **create index** *studentID_index* **on** *student(ID)*
- The query:

```
select *
from student
where ID = '12345'
```

can be executed by using the index to find the required record, without looking at all records of *student*

Authorization

- We may assign a user several forms of authorizations on parts of the database.
 - **Read** allows reading, but not modification of data.
 - **Insert** allows insertion of new data, but not modification of existing data.
 - **Update** allows modification, but not deletion of data.
 - **Delete** allows deletion of data.
- Each of these types of authorizations is called a **privilege**. We may authorize the user all, none, or a combination of these types of privileges on specified parts of a database, such as a relation or a view.

Authorization (Cont.)

- Forms of authorization to modify the database schema
 - **Index** allows creation and deletion of indices.
 - Resources allows creation of new relations.
 - Alteration allows addition or deletion of attributes in a relation.
 - **Drop** allows deletion of relations.

Authorization Specification in SQL

- The grant statement is used to confer authorization
 grant <privilege list> on <relation or view > to <user list>
- <user list> is:
 - a user-id
 - public, which allows all valid users the privilege granted
 - A role (more on this later)
- Example:
 - grant select on department to Amit, Satoshi
- Granting a privilege on a view does not imply granting any privileges on the underlying relations.
- The grantor of the privilege must already hold the privilege on the specified item (or be the database administrator).

- select: allows read access to relation, or the ability to query using the view
 - Example: grant users U_1 , U_2 , and U_3 **select** authorization on the *instructor* relation:

grant select on instructor to U_1 , U_2 , U_3

- **insert**: the ability to insert tuples
- update: the ability to update using the SQL update statement
- **delete**: the ability to delete tuples.
- all privileges: used as a short form for all the allowable privileges

Revoking Authorization in SQL

- The **revoke** statement is used to revoke authorization.
 - revoke <privilege list> on <relation or view> from <user list>
- Example:
 - revoke select on student from U_{ν} , $U_{2\nu}$, $U_{3\nu}$
- <pri><pri><pri>ilege-list</pr>> may be all to revoke all privileges the revokee may hold.
- If <revokee-list> includes **public**, all users lose the privilege except those granted it explicitly.
- If the same privilege was granted twice to the same user by different grantees, the user may retain the privilege after the revocation.
- All privileges that depend on the privilege being revoked are also revoked.

Roles

- A **role** is a way to distinguish among various users as far as what these users can access/update in the database.
- To create a role we use:

create a role < name >

- Example:
 - create role instructor
- Once a role is created we can assign "users" to the role using:
 - grant <role> to <users>

Roles Example

- create role instructor;
- grant instructor to Amit;
- Privileges can be granted to roles:
 - grant select on takes to instructor;
- Roles can be granted to users, as well as to other roles
 - **create role** *teaching_assistant*
 - **grant** teaching_assistant **to** instructor;
 - *Instructor* inherits all privileges of *teaching_assistant*
- Chain of roles
 - create role dean;
 - **grant** instructor **to** dean;
 - **grant** *dean* **to** Satoshi;

create view geo_instructor as

(select *

from *instructor*

where dept_name = 'Geology');

- **grant select on** *geo_instructor* **to** *geo_staff*
- Suppose that a *geo_staff* member issues
 - select *from geo_instructor;
- What if
 - *geo_staff* does not have permissions on *instructor?*
 - Creator of view did not have some permissions on instructor?

Authorization on Views

Other Authorization Features

- references privilege to create foreign key
 - **grant reference** (*dept_name*) **on** *department* **to** Mariano;
 - Why is this required?
- transfer of privileges
 - grant select on department to Amit with grant option;
 - revoke select on department from Amit, Satoshi cascade;
 - revoke select on department from Amit, Satoshi restrict;
 - And more!

