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UNIT 2 

SEMI SUPERVISED LEARNING 

Semi-supervised learning is a branch of machine learning that 

combines supervised and unsupervised learning by using both labeled and unlabeled data to 

train artificial intelligence (AI) models for classification and regression tasks. 

Though semi-supervised learning is generally employed for the same use cases in which one 

might otherwise use supervised learning methods, it’s distinguished by various techniques 

that incorporate unlabeled data into model training, in addition to the labeled data required 

for conventional supervised learning. 

Semi-supervised learning methods are especially relevant in situations where obtaining a 

sufficient amount of labeled data is prohibitively difficult or expensive, but large amounts of 

unlabeled data are relatively easy to acquire. In such scenarios, neither fully supervised nor 

unsupervised learning methods will provide adequate solutions. 

Labeled data and machine learning 

Training AI models for prediction tasks like classification or regression typically 

requires labeled data: annotated data points that provide necessary context and demonstrate 

the correct predictions (output) for each sample input. During training, a loss 

function measures the difference (loss) between the model’s predictions for a given input and 

the ―ground truth‖ provided by that input’s label. Models learn from these labeled examples 

by using techniques like gradient descent that update model weights to minimize loss. 

Because this machine learning process actively involves humans, it is called ―supervised‖ 

learning. 

Properly labeling data becomes increasingly labor-intensive for complex AI tasks. For 

example, to train an image classification model to differentiate between cars and motorcycles, 

hundreds (if not thousands) of training images must be labeled ―car‖ or ―motorcycle‖; for a 

more detailed computer vision task, like object detection, humans must not only annotate the 

object(s) each image contains, but where each object is located; for even more detailed tasks, 
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like image segmentation, data labels must annotate specific pixel-by-pixel boundaries of 

different image segments for each image. 

Labeling data can thus be particularly tedious for certain use cases. In more specialized 

machine learning use cases, like drug discovery, genetic sequencing or protein classification, 

data annotation is not only extremely time-consuming, but also requires very specific domain 

expertise. 

Semi-supervised learning offers a way to extract maximum benefit from a scarce amount of 

labeled data while also making use of relatively abundant unlabeled data.  
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Semi-supervised learning vs. supervised learning vs. unsupervised learning 

Semi-supervised learning can be thought of as a hybrid of or middle ground between 

supervised learning and unsupervised learning. 

Semi-supervised learning vs supervised learning 

The primary distinction between semi- and fully supervised machine learning is that the latter 

can only be trained using fully labeled datasets, whereas the former uses both labeled and 

unlabeled data samples in the training process. Semi-supervised learning techniques modify 

or supplement a supervised algorithm—called the ―base learner,‖ in this context—to 

incorporate information from unlabeled examples. Labeled data points are used to ground the 

base learner’s predictions and add structure (like how many classes exist and the basic 

characteristics of each) to the learning problem. 

The goal in training any classification model is for it to learn an accurate decision 

boundary: a line—or, for data with more than two dimensions, a ―surface‖ or hyperplane—

separates data points of one classification category from data points belonging to a different 

classification category. Though a fully supervised classification model can technically 
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learn a decision boundary using only a few labeled data points, it might not generalize well to 

real-world examples, making the model's predictions unreliable. 

The classic ―half-moons‖ dataset visualizes the shortcomings of supervised models relying on 

too few labeled data points. Though the ―correct‖ decision boundary would separate each of 

the two half-moons, a supervised learning model is likely to overfit the few labeled data 

points available. The unlabeled data points clearly convey helpful context, but a traditional 

supervised algorithm cannot process unlabeled data. 

 

Using only the very limited labeled data points available, a supervised model may learn a 

decision boundary that will generalize poorly and be prone to misclassifying new examples. 

Semi-supervised learning vs unsupervised learning 

Unlike semi-supervised (and fully supervised) learning, unsupervised learning algorithms use 

neither labeled data nor loss functions. Unsupervised learning eschews any ―ground truth‖ 

context against which model accuracy can be measured and optimized. 

An increasingly common semi-supervised approach, particularly for large language models, 

is to ―pre-train‖ models via unsupervised tasks that require the model to learn meaningful 

representations of unlabeled data sets. When such tasks involve a ―ground truth‖ and loss 

function (without manual data annotation), they’re called self-supervised learning. After 

subsequent ―supervised fine tuning‖ on a small amount of labeled data, pre-trained models 

can often achieve performance comparable to fully supervised models. 

While unsupervised learning methods can be useful in many scenarios, that lack of context 

can make them ill-suited to classification on their own. Take, for example, how a 

typical clustering algorithm—grouping data points into a pre-determined number of clusters 

based on their proximity to one another—would treat the half-moon dataset. 

 

A typical unsupervised algorithm, k-means clustering, might incorrectly group data points 

together based only on their relative closeness to "average" datapoints (centroids). 

Semi-supervised learning vs self-supervised learning 
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Both semi- and self-supervised learning aim to circumvent the need for large amounts of 

labeled data—but whereas semi-supervised learning involves some labeled data, self-

supervised learning methods like autoencoders are truly unsupervised. 

While supervised (and semi-supervised) learning requires an external ―ground truth,‖ in the 

form of labeled data, self-supervised learning tasks derive the ground truth from the 

underlying structure of unlabeled samples. Many self-supervised tasks are not useful unto 

themselves: their utility lies in teaching models data representations useful for the purposes of 

subsequent ―downstream tasks.‖ As such, they are often called ―pretext tasks.‖ 

When combined with supervised downstream tasks, self-supervised pretext tasks thus 

comprise part of a semi-supervised learning process: a learning method using both labeled 

and unlabeled data for model training. 

How does semi-supervised learning work? 

Semi-supervised learning relies on certain assumptions about the unlabeled data used to train 

the model and the way data points from different classes relate to one another. 

A necessary condition of semi-supervised learning (SSL) is that the unlabeled examples used 

in model training must be relevant to the task the model is being trained to perform. In more 

formal terms, SSL requires that the distribution p(x) of the input data must contain 

information about the posterior distribution p(y|x)—that is, the conditional probability of a 

given data point (x) belonging to a certain class (y). So, for example, if one is using unlabeled 

data to help train an image classifier to differentiate between pictures of cats and pictures of 

dogs, the training dataset should contain images of both cats and dogs—and images of horses 

and motorcycles will not be helpful. 

Accordantly, while a 2018 study of semi-supervised learning algorithms found that 

―increasing the amount of unlabeled data tends to improve the performance of SSL 

techniques,‖ it also found that ―adding unlabeled data from a mismatched set of classes can 

actually hurt performance compared to not using any unlabeled data at all."
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The basic condition of p(x) having a meaningful relationship to p(x|y) gives rise to 

multiple assumptions about the nature of that relationship. These assumptions are the driving 

force behind most, if not all, SSL methods: generally speaking, any semi-supervised learning 
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algorithm relies on one or more of the following assumptions being explicitly or implicitly 

satisfied. 

Cluster assumption 

The cluster assumption states that data points belonging to the same cluster–a set of data 

points more similar to each other than they are to other available data points–will also belong 

to the same class. 

Though sometimes considered to be its own independent assumption, the clustering 

assumption has also been described by van Engelen and Hoos as ―a generalization of the 

other assumptions."
2
 In this view, the determination of data point clusters depends on which 

notion of similarity is being used: the smoothness assumption, low-density assumption and 

manifold assumption each simply leverage a different definition of what comprises a 

―similar‖ data point. 

Smoothness assumption 

The smoothness assumptions states that if two data points, x and x’, are close to each other in 

the input space—the set of all possible values for x–then their labels, y and y’, should be the 

same. 

This assumption, also known as the continuity assumption, is common to most supervised 

learning: for example, classifiers learn a meaningful approximation (or ―representation‖) of 

each relevant class during training; once trained, they determine the classification of new data 

points via which representation they most closely resemble. 

In the context of SSL, the smoothness assumption has the added benefit of being 

applied transitively to unlabeled data. Consider a scenario involving three data points: 

 a labeled data point, x1 

 an unlabeled data point, x2, that’s close to x1 

 another unlabeled data point, x3, that’s close to x2 but not close to x1 

The smoothness assumption tells us that x2 should have the same label as x1. It also tells us 

that x3 should have the same label as x2. Therefore, we can assume that all three data points 

have the same label, because x1’s label is transitively propagated to x3 because of x3’s 

proximity to x2. 



Low-density assumption 

The low-density assumption states that the decision boundary between classes should not pass 

through high-density regions. Put another way, the decision boundary should lie in an area 

that contains few data points. 

The low-density assumption could thus be thought of as an extension of the cluster 

assumption (in that a high-density cluster of data points represents a class, rather than the 

boundary between classes) and the smoothness assumption (in that if multiple data points are 

near each other, they should share a label, and thus fall on the same side of the decision 

boundary). 

This diagram illustrates how the smoothness and low-density assumptions can inform a far 

more intuitive decision boundary than would be possible with supervised methods that can 

only consider the (very few) labeled data points. 

 

Source: van Engelen, et al (2018) 

Manifold assumption 

The manifold assumption states that the higher-dimensional input space comprises multiple 

lower dimensional manifolds on which all data points lie, and that data points on the same 

manifold share the same label. 

For an intuitive example, consider a piece of paper crumpled up into a ball. The location of 

any points on the spherical surface can only mapped with three-dimensional x,y,z coordinates. 

But if that crumpled up ball is now flattened back into a sheet of paper, those same points can 

now be mapped with two-dimensional x,y coordinates. This is called dimensionality 

reduction, and it can be achieved mathematically using methods like autoencoders 

or convolutions. 

In machine learning, dimensions correspond not to the familiar physical dimensions, but to 

each attribute or feature of data. For example, in machine learning, a small RGB image 

measuring 32x32 pixels has 3,072 dimensions: 1,024 pixels, each of which has three values 

(for red, green and blue). Comparing data points with so many dimensions is challenging, 
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both because of the complexity and computational resources required and because most of 

that high-dimensional space does not contain information meaningful to the task at hand. 

The manifold assumption holds that when a model learns the proper dimensionality reduction 

function to discard irrelevant information, disparate data points converge to a more 

meaningful representation for which the other SSL assumptions are more reliable. 

 

Mapping the data points to a lower-dimensional manifold can provide a more accurate 

decision boundary, which can then be translated back to higher-dimensional space. (source: 

van Engelen, et al, 2018) 
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