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Principal Component Analysis 

Principal Component Analysis is an unsupervised learning algorithm that is used for the 

dimensionality reduction in machine learning. It is a statistical process that converts the 

observations of correlated features into a set of linearly uncorrelated features with the help of 

orthogonal transformation. These new transformed features are called the Principal 

Components. It is one of the popular tools that is used for exploratory data analysis and 

predictive modeling. It is a technique to draw strong patterns from the given dataset by 

reducing the variances.  

PCA generally tries to find the lower-dimensional surface to project the high-dimensional 

data.  

PCA works by considering the variance of each attribute because the high attribute shows the 

good split between the classes, and hence it reduces the dimensionality. Some real-world 

applications of PCA are image processing, movie recommendation system, optimizing the 

power allocation in various communication channels. It is a feature extraction technique, so it 

contains the important variables and drops the least important variable.  

The PCA algorithm is based on some mathematical concepts such as:  

Variance and Covariance  

Eigenvalues and Eigen factors  

Some common terms used in PCA algorithm:  

Dimensionality: It is the number of features or variables present in the given dataset. More 

easily, it is the number of columns present in the dataset.  

Correlation: It signifies that how strongly two variables are related to each other. Such as if 

one changes, the other variable also gets changed. The correlation value ranges from -1 to +1. 

Here, -1 occurs if variables are inversely proportional to each other, and +1 indicates that 

variables are directly proportional to each other.  



Orthogonal: It defines that variables are not correlated to each other, and hence the 

correlation between the pair of variables is zero.  

Eigenvectors: If there is a square matrix M, and a non-zero vector v is given. Then v will be 

eigenvector if Av is the scalar multiple of v.  

Covariance Matrix: A matrix containing the covariance between the pair of variables is 

called the Covariance Matrix.  

 

Principal Components PCA: 

 

 

 

 

 

 

 

 

 

 



As described above, the transformed new features or the output of PCA are the Principal 

Components. The number of these PCs are either equal to or less than the original features 

present in the dataset. Some properties of these principal components are given below:  

The principal component must be the linear combination of the original features. These 

components are orthogonal, i.e., the correlation between a pair of variables is zero. The 

importance of each component decreases when going to 1 to n, it means the 1 PC has the 

most importance, and n PC will have the least importance.  

Steps for PCA algorithm  

Getting the dataset  

Firstly, we need to take the input dataset and divide it into two subparts X and Y, where X is 

the training set, and Y is the validation set.  

Representing data into a structure  

Now we will represent our dataset into a structure. Such as we will represent the two-

dimensional matrix of independent variable X. Here each row corresponds to the data items, 

and the column corresponds to the Features. The number of columns is the dimensions of the 

dataset.  

Standardizing the data  

In this step, we will standardize our dataset. Such as in a particular column, the features with 

high variance are more important compared to the features with lower variance.  

If the importance of features is independent of the variance of the feature, then we will divide 

each data item in a column with the standard deviation of the column. Here we will name the 

matrix as Z.  

Calculating the Covariance of Z  

To calculate the covariance of Z, we will take the matrix Z, and will transpose it. After 

transpose, we will multiply it by Z. The output matrix will be the Covariance matrix of Z.  

Calculating the Eigen Values and Eigen Vectors  

Now we need to calculate the eigenvalues and eigenvectors for the resultant covariance 

matrix Z. Eigenvectors or the covariance matrix are the directions of the axes with high 

information. And the coefficients of these eigenvectors are defined as the eigenvalues.  

Sorting the Eigen Vectors  

In this step, we will take all the eigenvalues and will sort them in decreasing order, which 

means from largest to smallest. And simultaneously sort the eigenvectors accordingly in 

matrix P of eigenvalues. The resultant matrix will be named as P*.  



Calculating the new features Or Principal Components  

Here we will calculate the new features. To do this, we will multiply the P* matrix to the Z. 

In the resultant matrix Z*, each observation is the linear combination of original features. 

Each column of the Z* matrix is independent of each other.  

Remove less or unimportant features from the new dataset.  

The new feature set has occurred, so we will decide here what to keep and what to remove. It 

means, we will only keep the relevant or important features in the new dataset, and 

unimportant features will be removed out.  

Applications of Principal Component Analysis  

PCA is mainly used as the dimensionality reduction technique in various AI applications such 

as computer vision, image compression, etc.  

It can also be used for finding hidden patterns if data has high dimensions. Some fields where 

PCA is used are Finance, data mining, Psychology, etc. 

The purpose of this post is to provide a complete and simplified explanation of principal 

component analysis (PCA). We’ll cover how it works step by step, so everyone can 

understand it and make use of it, even those without a strong mathematical background. 

PCA is a widely covered machine learning method on the web, and there are some great 

articles about it, but many spend too much time in the weeds on the topic, when most of us 

just want to know how it works in a simplified way.  

Principal component analysis can be broken down into five steps. I’ll go through each step, 

providing logical explanations of what PCA is doing and simplifying mathematical concepts 

such as standardization, covariance, eigenvectors and eigenvalues without focusing on how to 

compute them. 

HOW DO YOU DO A PRINCIPAL COMPONENT ANALYSIS? 

1. 1.Standardize the range of continuous initial variables 

2. 2.Compute the covariance matrix to identify correlations 

3. 3.Compute the eigenvectors and eigenvalues of the covariance matrix to identify the principal 

components 

4. 4.Create a feature vector to decide which principal components to keep 

https://builtin.com/machine-learning/pca-in-python
https://builtin.com/machine-learning/pca-in-python
https://builtin.com/machine-learning
https://builtin.com/data-science/when-and-why-standardize-your-data
https://builtin.com/data-science/covariance-vs-correlation


5. 5.Recast the data along the principal components axes 

What Is Principal Component Analysis? 

Principal component analysis, or PCA, is a dimensionality reduction method that is often 

used to reduce the dimensionality of large data sets, by transforming a large set of variables 

into a smaller one that still contains most of the information in the large set. 

Reducing the number of variables of a data set naturally comes at the expense of accuracy, 

but the trick in dimensionality reduction is to trade a little accuracy for simplicity. Because 

smaller data sets are easier to explore and visualize and make analyzing data points much 

easier and faster for machine learning algorithms without extraneous variables to process. 

So, to sum up, the idea of PCA is simple — reduce the number of variables of a data set, 

while preserving as much information as possible. 

Step-by-Step Explanation of PCA 

STEP 1: STANDARDIZATION 

The aim of this step is to standardize the range of the continuous initial variables so that each 

one of them contributes equally to the analysis. 

More specifically, the reason why it is critical to perform standardization prior to PCA, is that 

the latter is quite sensitive regarding the variances of the initial variables. That is, if there are 

large differences between the ranges of initial variables, those variables with larger ranges 

will dominate over those with small ranges (for example, a variable that ranges between 0 

and 100 will dominate over a variable that ranges between 0 and 1), which will lead to biased 

results. So, transforming the data to comparable scales can prevent this problem. 

Mathematically, this can be done by subtracting the mean and dividing by the standard 

deviation for each value of each variable. 

https://builtin.com/data-science/dimensionality-reduction-python
https://builtin.com/data-science
https://builtin.com/data-science/tour-top-10-algorithms-machine-learning-newbies


 

Once the standardization is done, all the variables will be transformed to the same scale. 

STEP 2: COVARIANCE MATRIX COMPUTATION 

The aim of this step is to understand how the variables of the input data set are varying from 

the mean with respect to each other, or in other words, to see if there is any relationship 

between them. Because sometimes, variables are highly correlated in such a way that they 

contain redundant information. So, in order to identify these correlations, we compute 

the covariance matrix. 

The covariance matrix is a p × p symmetric matrix (where p is the number of dimensions) 

that has as entries the covariances associated with all possible pairs of the initial variables. 

For example, for a 3-dimensional data set with 3 variables x, y, and z, the covariance matrix is 

a 3×3 data matrix of this from: 

 

 

Covariance Matrix for 3-Dimensional Data. 

Since the covariance of a variable with itself is its variance (Cov(a,a)=Var(a)), in the main 

diagonal (Top left to bottom right) we actually have the variances of each initial variable. 

And since the covariance is commutative (Cov(a,b)=Cov(b,a)), the entries of the covariance 

matrix are symmetric with respect to the main diagonal, which means that the upper and the 

lower triangular portions are equal. 

What do the covariances that we have as entries of the matrix tell us about the 

correlations between the variables? 

https://builtin.com/data-science/mahalanobis-distance


It’s actually the sign of the covariance that matters: 

 If positive then: the two variables increase or decrease together (correlated) 

 If negative then: one increases when the other decreases (Inversely correlated) 

Now that we know that the covariance matrix is not more than a table that summarizes the 

correlations between all the possible pairs of variables, let’s move to the next step. 

  

STEP 3: COMPUTE THE EIGENVECTORS AND EIGENVALUES OF THE COVARIANCE 

MATRIX TO IDENTIFY THE PRINCIPAL COMPONENTS 

Eigenvectors and eigenvalues are the linear algebra concepts that we need to compute from 

the covariance matrix in order to determine the principal components of the data. Before 

getting to the explanation of these concepts, let’s first understand what do we mean by 

principal components. 

Principal components are new variables that are constructed as linear combinations or 

mixtures of the initial variables. These combinations are done in such a way that the new 

variables (i.e., principal components) are uncorrelated and most of the information within the 

initial variables is squeezed or compressed into the first components. So, the idea is 10-

dimensional data gives you 10 principal components, but PCA tries to put maximum possible 

information in the first component, then maximum remaining information in the second and 

so on, until having something like shown in the scree plot below. 

https://builtin.com/data-science/basic-linear-algebra-deep-learning


Percentage of Variance (Information) for each by PC. 

Organizing information in principal components this way, will allow you to reduce 

dimensionality without losing much information, and this by discarding the components with 

low information and considering the remaining components as your new variables. 

An important thing to realize here is that the principal components are less interpretable and 

don’t have any real meaning since they are constructed as linear combinations of the initial 

variables. 

Geometrically speaking, principal components represent the directions of the data that 

explain a maximal amount of variance, that is to say, the lines that capture most 

information of the data. The relationship between variance and information here, is that, the 

larger the variance carried by a line, the larger the dispersion of the data points along it, and 

the larger the dispersion along a line, the more information it has. To put all this simply, just 

think of principal components as new axes that provide the best angle to see and evaluate the 

data, so that the differences between the observations are better visible. 



STEP 4: FEATURE VECTOR 

As we saw in the previous step, computing the eigenvectors and ordering them by their 

eigenvalues in descending order, allow us to find the principal components in order of 

significance. In this step, what we do is, to choose whether to keep all these components or 

discard those of lesser significance (of low eigenvalues), and form with the remaining ones a 

matrix of vectors that we call Feature vector. 

So, the feature vector is simply a matrix that has as columns the eigenvectors of the 

components that we decide to keep. This makes it the first step towards dimensionality 

reduction, because if we choose to keep only p eigenvectors (components) out of n, the final 

data set will have only p dimensions. 

STEP 5: RECAST THE DATA ALONG THE PRINCIPAL COMPONENTS AXES 

In the previous steps, apart from standardization, you do not make any changes on the data, 

you just select the principal components and form the feature vector, but the input data set 

remains always in terms of the original axes (i.e, in terms of the initial variables). 

In this step, which is the last one, the aim is to use the feature vector formed using the 

eigenvectors of the covariance matrix, to reorient the data from the original axes to the ones 

represented by the principal components (hence the name Principal Components Analysis). 

This can be done by multiplying the transpose of the original data set by the transpose of the 

feature vector. 
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