
R Functions

1

R Functions

❑ Functions are used to logically break our code into simpler parts which

become easy to maintain and understand.

❑ It’s pretty straightforward to create your own function in R
programming.

Syntax

func_name <function(argument){

statement

}

2

❑ The reserved word function is used to declare a function in R.

❑ The statements within the curly braces form the body of the

function.

❑ These braces are optional if the body contains only a single

expression.

❑ Finally, this function object is given a name by assigning it to a
variable, func_name.

R Functions

3

Example

R Functions

pow <- function(x, y) {

function to print x raised to the

power y result <- x^y

print(paste(x,"raised to the power", y, "is", result))

}

❑ Here, we created a function called pow().

❑ It takes two arguments, finds the first argument raised to the power of

second argument and prints the result in appropriate format.

❑ We have used a built-in function paste() which is used to concatenate
strings.

4

R Functions

>pow(8, 2)

[1] "8 raised to the power 2 is 64"

>pow(2, 8)

"2 raised to the power 8 is 256”

❑ Here, the arguments used in the function declaration (x and y) are

called formal arguments and those used while calling the function are

called actual arguments.

❑ In the above function calls, the argument matching of formal argument

to the actual arguments takes place in positional order.

❑ This means that, in the call pow(8,2), the formal arguments x and y

are assigned 8 and 2 respectively.

How to call a function?

We can call the above function as follows.

5

R Functions

Named Arguments

We can also call the function using named arguments.

When calling a function in this way, the order of the actual arguments
doesn’t matter.

For example, all of the function calls given below are equivalent.

>pow(8, 2)

[1] "8 raised to the power 2 is 64"

>pow(x = 8, y = 2)

[1] "8 raised to the power 2 is 64"

>pow(y = 2, x = 8)

[1] "8 raised to the power 2 is 64"

6

we can use named and unnamed arguments in a single call.

In such case, all the named arguments are matched first and then the
remaining unnamed arguments are matched in a positional order.

R Functions

>pow(x=8, 2)

[1] "8 raised to the power 2 is 64"

>pow(2, x=8)

[1] "8 raised to the power 2 is 64”

In all the examples above, x gets the value 8 and y gets the value 2.

7

R Functions

Default Values for Arguments

We can assign default values to arguments in a function in R.
This is done by providing an appropriate value to the formal argument in
the function declaration.

pow <- function(x, y = 2) {

function to print x raised to the power y

result <- x^y

print(paste(x,"raised to the power", y, "is", result))

}

8

The use of default value to an argument makes it optional when calling
the function.

>pow(3)

[1] "3 raised to the power 2 is 9"

>pow(3,1)

[1] "3 raised to the power 1 is 3"

R Functions

9

R Functions

❑ The body(), the code inside the function.

❑ The formals(), the "formal" argument list, which controls how you can

call the function.

❑ The `environment()`` which determines how variables referred to

inside the function are found.

❑ args() to list arguments.

Basic components of a function

f <- function(x) x
f
formals(f)
environment(f)

10

R Functions

More on environments

Variables defined inside functions exist in a different environment than the

global environment. However, if a variable is not defined inside a function,

it will look one level above.

x <- 2

g <-

function() {

y <- 1

c(x, y)

}

g()

#[1] 2 1

11

Same rule applies for nested functions

R Functions

A first useful function.

first <- function(x, y) {

z <- x + y

return(z)

}

add <- function(a, b) {

return(a + b)

}

vector <- c(3, 4, 5, 6)

sapply(vector, add, 1)

12

R Functions

What does this function return?

x <- 5

f <- function() { y <- 10

c(x = x, y = y)

}

f()

13

R Functions

What does this function return?

x <- 5

g <- function() { x <- 20

y <- 10

c(x = x, y = y)

}

g()

14

R Functions

What does this function return?

x <- 5

h <- function() { y <- 10

i <- function() { z <- 20

c(x = x, y = y, z = z)

}

i()

}

h()

15

R Functions

Functions with pre defined values

temp <- function(a = 1, b = 2) {

return(a + b)

}

Functions usually return the last value it computed

f <- function(x) {

if (x < 10) {

0

} else {

10

}

}

f(5)

f(15) 16

R Functions

append() Add elements to a vector

c() Compactly Values into a Vector or List

identical() Test if 2 objects are exactly equal.

length() Returns length of R object.

is() List objects in current environment.

range(x) Returns minimum and maximum of vector.

rep(x,n) Repeat the number x, n times

rev(x) Reversed version of its argument.

Commonly Used R functions

17

R Functions

Seq(x,y,n) Generate regular sequences from x to y, spaced by n

unique(x) Remove duplicate entries from vector

summary(x) Returns Object Summaries

str() Compactly Display the Structure of an Arbitrary R Object

glimpse(x) Compactly Display the Structure of an Arbitrary R Object(dplyr package)

class(x) Return

mode(x) Get or set the type or storage mode of an object.

tolower() Convert string to lower case letters

toupper() Convert string to upper case letters

grep() Used for regular expressions

18

19

Running R Script

The source() function instructs R reads the next file and execute its
contents.
source(“myScript.R”)

Optional parameter echo=TRUE will echo the script lines before they are
executed
source(“myScript.R”, echo=TRUE)

Run Script

20

Run Script

>?source

>source("ex1.R")

[1] "Welcome to R Programming"

[1] "hello" "hi" "good"

[1] "x is less than 1"

[1] "x is between 8 and 15"

[1] "Second"

[1] "Fourth"

>

21

>source("ex1.R",echo=TRUE)

Echo the Script lines before execution

>print("Welcome to R Programming")

[1] "Welcome to R Programming"

>?apply

>s1=c("hello","hi","good")

>print(s1)

[1] "hello" "hi" "good"

Run Script

22

Run Script

Running a Batch Script

R CMD BATCH command will help to run code in batch mode.

$ R CMD BATCH myscript.R outputfile

In case if you want the output sent to stdout or if you need to pass
command-line arguments to the script then Rscript command can
be used.

$ Rscript myScript.R arg1 arg2

23

Run Script

Surendras-MacBook-Pro:rprog SurendraMac$ R CMD BATCH hello.R outhello

Surendras-MacBook-Pro:rprog SurendraMac$ ls

R_Notebook1.Rmd ex1.R hello1.R outhello

R_Notebook1.nb.html hello.R ifex.R readintegerex.R

Surendras-MacBook-Pro:rprog SurendraMac$ Rscript hello.R

[1] "Welcome to R Programming“

Surendras-MacBook-Pro:rprog SurendraMac$ Rscript hello1.R

[1] "Test R”

