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% H, S, G and K for reaction N2 + 3 H2 = 2 NH3
dhrT = 2*hfT_nh3 - hfT_n2 - 3*hfT_h2
dsrT = 2*sfT_nh3 - sfT_n2 - 3*sfT_h2

dgrT = dhrT - T*dsrT
K = exp(-dgrT/(8.3145*T))

Exercise 7.3 ∗ NOx equilibrium. A gas mixture at 940 oC and 2.5 bar consists of 5% O2,
11% NO, 16% H2O and the rest N2. The formation of NO2 is neglected, and you need to
check whether this is reasonable by calculating the ratio (maximum) between NO2 and NO
that one would get if the reaction

NO + 0.5O2 = NO2

was in equilibrium at 940 oC. Data. Assume constant heat capacity and use data for ideal
gas from page 416.

Exercise 7.4 Consider the gas phase reaction

4NH3 + 5O2 = 4NO + 6H2O

(a) Calculate standard enthalpy, entropy, Gibbs energy and the equilibrium constant for the
reaction at 298 K and 1200 K.
(b) Calculate the equilibrium composition at 1200 K and 8 bar when the feed consists of 10
mol-% ammonia, 18 mol-% oxygen and 72 mol-% nitrogen.
(c) What is the feed temperature if the reactor operates adiabatically?

Data. Assume constant heat capacity and use data for ideal gas from page 416.

7.4 Introduction to vapor/liquid equilibrium

Phase equilibrium, and in particular vapor/liquid-equilibrium (VLE), is important
for many process engineering applications. The thermodynamic basis for phase
equilibrium is the same as for chemical equilibrium, namely that the Gibbs energy
G is minimized at a given T and p (see page 174).

7.4.1 General VLE condition for mixtures

Vapor/liquid-equilibrium (VLE) for mixtures is a large subject, and we will here
state the general equilibrium condition, and then give some applications. The fact
that the Gibbs energy G is minimized at a given temperature T and pressure p
implies that a necessary equilibrium condition is that G must remain constant for
any small perturbation, or mathematically (dG)T,p = 0 (see page 385). Consider a
small perturbation to the equilibrium state where a small amount dni of component
i evaporates from the liquid phase (l) to the vapor/gas phase (g). The necessary
equilibrium condition at a given T and p then gives

dG = (Ḡg,i − Ḡl,i)dni = 0 (7.26)

where Ḡi [J/mol i] is the partial Gibbs energy, also known as the chemical potential,
µi , Ḡi. Since (7.26) must hold for any value of dni, we derive the equilibrium

skoge
Typewriter
Extracted from the book:
S. Skogestad, "Chemical and Energy Process Engineering",
CRC Press (Taylor and Francis), 2009.

skoge
Typewriter

skoge
Typewriter

Edited by Foxit ReaderCopyright(C) by Foxit Corporation,2005-2010For Evaluation Only.



180 CHEMICAL AND ENERGY PROCESS ENGINEERING

y

x

p, T

i

i

liquid phase (l)

vapor phase (g)

Figure 7.3: Vapor/liquid equilibrium (VLE)

condition Ḡg,i = Ḡl,i. That is, the VLE-condition is that the chemical potential for
any component i is the same in both phases,

µg,i = µl,i (7.27)

7.4.2 Vapor pressure of pure component

Let us first consider VLE for a pure component. The component vapor pressure psat(T )
is the equilibrium (or saturation) pressure for the pure liquid at temperature T . As
the temperature increases, the molecules in the liquid phase move faster and it becomes
more likely that they achieve enough energy to escape into the vapor phase, so the
vapor pressure increases with temperature. For example, the vapor pressure for water
is 0.0061 bar at 0 oC, 0.03169 bar at 25 oC, 1.013 bar at 100 oC, 15.54 bar at 200 oC
and pc = 220.9 bar at Tc = 374.1oC (critical point).

As the temperature and resulting vapor pressure increases, the molecules come closer
together in the gas phase, and eventually we reach the critical point (at temperature
Tc and pressure pc), where there is no difference between the liquid and gas phases. For
a pure component, the critical temperature Tc is the highest temperature where a
gas can condense to a liquid, and the vapor pressure is therefore only defined up to Tc.
The corresponding critical pressure pc is typically around 50 bar, but it can vary a
lot, e.g., from 2.3 bar (helium) to 1500 bar (mercury).

For a pure component, the exact Clapeyron equation provides a relationship
between vapor pressure and temperature,

dpsat

dT
=

∆vapS

∆vapV
=

∆vapH

T∆vapV
(7.28)

Here ∆vapH = Hg − Hl [J/mole] is the heat of vaporization at temperature T and
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∆vapV = Vg − Vl [m3/mol] is the difference in molar volume between the phases. An
equivalent expression applies for the vapor pressure over a pure solid.

Derivation of (7.28): From (7.27) the necessary equilibrium condition is Gg = Gl. Assume that

there is a small change in T which results in a small change in p. From (B.66), the resulting changes in

Gibbs energy are dGl = Vldp−SldT and dGg = Vgdp−SgdT . Since the system is still in equilibrium

after the change, we must have dGl = dGg which gives (Vg − Vl)dp − (Sg − Sl)dT . The Clapeyron

equation follows by noting that ∆vapS = ∆vapH/T , see (7.8).

In most cases, we have Vg ≫ Vl, and for ideal gas we have Vg = p/RT and from
(7.28) we then derive, by using 1

pdp = d ln p, the approximate Clausius-Clapeyron
equation,

d ln psat(T )

dT
=

∆vapH(T )

RT 2
(7.29)

which applies for a pure component at low pressure, typically less than 10 bar. If the
heat of vaporization ∆vapH is constant (independent of T ; which indeed is somewhat
unrealistic since it decreases with temperature and is 0 in the critical point), we derive
from (7.29) the integrated Clausius-Clapeyron equation,

psat(T ) = psat(T0) exp

[

−∆vapH

R

(
1

T
− 1

T0

)]

(7.30)

which is sometimes used to compute the vapor pressure at temperature T given
psat(T0) at temperature T0. However, (7.30) is not sufficiently accurate for practical
calculations, so instead empirical relationships are used. A popular one is the Antoine
equation, 2

ln psat(T ) = A − B

T + C
(7.31)

Note that (7.30) is in the form (7.31) with A = ln psat(T0) + ∆vapH/RT0, B =
∆vapH/R and C = 0. Antoine parameters for some selected components are given in
Table 7.2 (page 190).

Example 7.13 For water, we find in an older reference book the following Antoine constants:
A = 18.3036, B = 3816.44 and C = −46.13. This is with pressure in [mm Hg] and temperature
in [K] (note that these Antoine parameters are different from those given in Table 7.2). The
vapor pressure at 100 oC is then

psat(373.15 K) = e
18.3036− 3816.44

(373.15−46.13) = 759.94 mmHg =
759.94

750.1
bar = 1.013 bar

which agrees with the fact that the boiling temperature for water is 100 oC at 1 atm = 1.01325
bar.

Engineering rule for vapor pressure of water. The following simple formula,
which is easy to remember, gives surprisingly good estimates of the vapor pressure for
water for temperatures from 1000C (the normal boiling point) and up to 374oC (the
critical point):

psat
H2O[bar] =

(
t[oC]

100

)4

(7.32)

2 Numerical values for the three Antoine constants A, B and C are found in many reference books
(for example, B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The properties of gases and liquids, 5th

Edition, McGraw-Hill, 2001.
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This formula is very handy for engineers dealing with steam at various pressure levels.
For example, from the formula we estimate psat ≈ 1 bar at 100oC (the correct value is
1 atm = 1.013 bar) and psat ≈ 24 = 16 bar at 200oC (the correct value is 15.53 bar).

Exercise 7.5 ∗ Test the validity of the simple formula (7.32), by comparing it with the
following experimental vapor pressure data for water:

t[oC] 0 25 50 75 100 120 150 200 250 300 374.14(tc)
p[bar] 0.00611 0.03169 0.1235 0.3858 1.013 1.985 4.758 15.53 39.73 85.81 220.9(pc)

Also test the validity of the two alternative sets of Antoine constants for water (given in
Example 7.13 and Table 7.2).

Exercise 7.6 ∗ Effect of barometric pressure on boiling point. Assume that the
barometric (air) pressure may vary between 960 mbar (low pressure) and 1050 mbar (high
pressure). What is the corresponding variation in boiling point for water?

Comment. Note the similarity between Clausius-Clapeyron’s equation (7.29) for the temperature
dependency of vapor pressure,

d ln psat(T )

dT
=

∆vapH(T )

RT 2

and van’t Hoff’s equation (7.25) for the temperature dependency of the chemical equilibrium constant
K,

d ln K

dT
=

∆rH⊖(T )

RT 2

This is of course not a coincidence, because we can view evaporation as a special case of an endothermic

“chemical reaction.”

7.4.3 VLE for ideal mixtures: Raoult’s law

Here, we consider vapor/liquid equilibrium of mixtures; see Figure 7.3 (page 180). Let

xi - mole fraction of component i in the liquid phase
yi - mole fraction of component i in the vapor phase

The simplest case is an ideal liquid mixture and ideal gas where Raoult’s law states
that for any component i, the partial pressure pi = yip equals the vapor pressure of
the pure component i multiplied by its mole fraction xi in the liquid phase, that is,

Raoult′s law : yip = xip
sat
i (T ) (7.33)

A simple molecular interpretation of Raoult’s law is that in an ideal liquid mixture
the fraction of i-molecules at the surface is xi, so the partial pressure pi = yip is
reduced from psat

i (T ) (pure component) to xip
sat
i (T ) (ideal mixture).

Thermodynamic derivation of Raoult’s law. A thermodynamic derivation is useful because

it may later be generalized to the non-ideal case. We start from the general VLE condition µg,i = µl,i

in (7.27), which says that the chemical potential (= partial Gibbs energy) for each component is the

same in both phases at the given p and T . Now, Gibbs energy is a state function, and we can also

imagine another route for taking component i from the liquid to the vapor phase, consisting of four

steps (all at temperature T ): (1) Take component i out of the liquid mixture. From (B.41) the change

in chemical potential for this “unmixing” is ∆µi,1 = −RT ln ai where the activity is ai = γixi.

For an ideal liquid mixture the activity coefficient is 1, γi = 1. (2) Take the pure component as
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liquid from pressure p to the saturation pressure psat
i (T ). Since the liquid volume is small this gives a

very small change in chemical potential, known as the Poynting factor, which we here neglect, i.e.,

∆µi,2 ≈ 0. (3) Evaporate the pure component at T and psat
i (T ). Since we have equilibrium (∆G = 0)

there is no change in the chemical potential, ∆µi,3 = 0. (4) In the gas phase, go from pure component

at pressure psat
i (T ) to a mixture at p where the partial pressure is pi. From (B.40), the change in

chemical potential for an ideal gas is ∆µi,4 = RT ln(pi/psat
i (T )). Now, since the initial and final

states are in equilibrium, the sum of the change in chemical potential for these four steps should be

zero and we derive −RT lnxi + RT ln(pi/psat
i (T )) = 0 and Raoult’s law follows.

7.4.4 Relative volatility

The relative volatility α is a very useful quantity. For example, it is used for short-cut
calculations for distillation columns.3 For a mixture, the relative volatility α between
the two components L (the “light” component) and H (the “heavy” component) is
defined as

α ,
yL/xL

yH/xH
(7.34)

For an ideal mixture where Raoult’s law (7.33) applies, we then have

α =
yL/xL

yH/xH
=

psat
L (T )

psat
H (T )

(7.35)

that is, α equals the ratio between the pure component’s vapor pressures. Furthermore,
we see from (7.30) that if the heat of vaporization for the two components are similar,
then α does not change much with the temperature.

The approximation of constant relative volatility (independent of composition
and temperature) is often used in practical calculations, and is based on the following
assumptions

• Ideal liquid mixture such that Raoult’s law applies (α is then independent of
composition)

• The components have similar heat of vaporization (α is then independent of
temperature)

These assumptions generally hold well for separation of “similar” components.
However, the assumption of constant α is poor for many non-ideal mixtures. For
example, for a mixture that forms an azeotrope, like water and ethanol, we have
α = 1 at the azeotropic point, with α > 1 on one side and α < 1 on the other side of
the azeotrope (that is, even the order of “heavy” (H) and “light” (L) depends on the
liquid composition).

Relative volatility from boiling point data. For ideal mixtures that follow
Raoult’s law, the following approximate relationship between the relative volatility α
and the boiling point difference TbH − TbL for the components applies:

α ≈ exp

[
∆vapH

RTb
· TbH − TbL

Tb

]

(7.36)

3 For more on distillation see, for example, I.J. Halvorsen, S. Skogestad: “Distillation Theory,”
Encyclopedia of Separation Science, D. Wilson (Editor-in-chief), Academic Press, 2000 (available
at S. Skogestad’s homepage).
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Here Tb =
√

TbH · TbL is the geometric mean boiling point, and ∆vapH is the average
heat of vaporization for the two components at the average boiling point Tb. From

Trouton’s rule (see page 378), a typical value is
∆vapH

RTb
≈ 85J/mol K

8.31J/mol K = 10.2.
Derivation of (7.36). We assume that Raoult’s law holds such that (7.35) holds. If we assume
that the heat of vaporization is independent of temperature, then the integrated Clausius-Clapeyron
equation (7.30) gives for component L if we choose T = TbH and T0 = TbL:

psat
L (TbH) = psat

L (TbL) exp

»

−∆vapHL

R

„
1

TbH
− 1

TbL

«–

In practice, ∆vapHL depends on temperature, so an average value for the temperature interval from
TbL to TbH should be used. At the normal boiling points, psat

L (TbL) = psat
H (TbH) = 1 atm, and the

relative volatility at T = TbH becomes

α =
psat

L (TbH )

psat
H (TbH )

= exp

»

−∆vapHL

R

„
1

TbH
− 1

TbL

«–

A similar expression for α at T = TbL is derived by considering component H, and combining the

two yields (7.36). 2

Example 7.14 Let us use (7.36) to calculate an approximate value for relative volatility for
the mixture methanol (L) - ethanol (H). We obtain the following data for the pure components

Methanol : TbL = 337.8K; ∆vapHL(TbL) = 35.2 kJ/mol

Ethanol : TbH = 351.5K; ∆vapHB(TbH) = 40.7 kJ/mol

The geometric mean boiling point is Tb = 344.6 K, the average heat of vaporization is
∆vapH = (∆vapHL(TbL + ∆vapHB(TbH)/2 = 37.9 kJ/mol and we get ∆vapH/RTb = 13.25
(which is higher than the value of 10.2 according to Trouton’s rule). The boiling point
difference is 13.7 K, and assuming ideal mixture, (7.36) gives α ≈ exp 12.90·13.7

344.6
= 1.69.

The experimental value is about 1.73.

We emphasize that the simplified formula (7.36) is primarily intended to provide
insight, and one should normally obtain experimental data for the vapor/liquid
equilibrium or use a more exact model.4

7.4.5 Boiling point elevation and freezing point depression

Consider a mixture consisting mainly of a volatile component (the solvent A) with
some dissolved non-volatile component (the solute B). For example, this could be a
mixture of water (A) and sugar (B). Such a solution has a higher boiling point than
the pure component (e.g., water), and we want to find the boiling point elevation
∆Tb. For a dilute ideal mixture (solution) with mole fraction xB of the non-volatile
component, we derive that the boiling point elevation is

∆Tb = Tb − T ∗
b =

RT ∗2

b xB

∆vapH
(7.37)

where T ∗
b is the boiling point of the pure component A, and Tb is the boiling point of

the mixture. If the solution is not dilute then xB should be replaced by ln 1
1−xB

.

4 A comprehensive reference work for experimental vapor/liquid equilibrium data for mixtures is: J.
Gmehling and U. Onken, Vapor-liquid equilibrium data collection, Dechema Chemistry Data Series
(1977– ).
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Proof of (7.37). For an ideal mixture (solution), Raoult’s law (7.33) gives that the partial pressure
of the solvent (A) is pA = (1 − xB)psat

A (T ) where pA is equal to the total pressure p since the other
component is non-volatile. At the boiling point of the mixture, the total pressure is p0 = 1 atm and
we get p0 = (1− xB)psat

A (Tb). Here, from the integrated Clausius-Clapeyron equation (7.30) we have

for the solvent psat
A (Tb) = psat

A (T ∗
b ) exp

h

−∆vapH

R

“
1

Tb
− 1

T∗
b

”i

. Here, psat
A (T ∗

b ) = p0 = 1 atm (since

the vapor pressure of a pure component is 1 atm at the normal boiling point), and by combining and
taking the log on both sides we derive

ln
1

1 − xB
=

∆vapH

R

Tb − T ∗
b

T ∗
b Tb

(7.37) follows by assuming a dilute solution (xB → 0) where ln 1
1−xB

≈ xB and T ∗
b ≈ Tb. An

alternative derivation is to start from the general equilibrium condition µg,A = µl,A in (7.27). Here

µl,A = µ∗
l,a + RT lnxA for an ideal mixture and µg,A = µ∗

g,A because B is non-volatile. Using

µ∗
g,A −µ∗

l,a = ∆vapG, etc. leads to the desired results; for details see a physical chemistry textbook.

The reason for the boiling point elevation is that the dissolved components (B) make
it more favorable from an entropy point of view for the solvent to remain the liquid
phase. The same argument (that the solvent likes to remain in the liquid phase) also
applies for freezing, and it can be proved that for a dilute ideal mixture the freezing
(melting) point depression is

∆Tm = T ∗
m − Tm =

RT ∗2

m xB

∆fusH
(7.38)

where T ∗
m is the melting (freezing) point of the pure component, Tm the melting point

of the mixture and ∆fusH is the heat of melting.
In both (7.37) and (7.38), xB is the sum of the mole fractions of all dissolved

components (non-volatile or non-freezing). If a component dissociates (e.g., into ions),
then this must be taken into account (see the sea water example below).

Remark. Note that both the boiling point elevation (7.37) and the freezing point
depression (7.38) depend only on the concentration (mole fraction xB) of the dissolved
component (solute), and not on what component we have. Another such property is
the osmotic pressure over an ideal membrane (see page 382). These three properties
are referred to as colligative solution properties. They can, for example, be used
to determine the molar mass (M) of a molecule (see Exercise 7.7).

Example 7.15 Boiling point elevation and freezing point depression of seawater.
We first need to find the mole fraction xB of dissolved components. We assume that the
salinity of seawater is 3.3%, that is, 1 l seawater contains 33 g/l of salt (NaCl). Since the
molar mass of NaCl is 58.4 g/mol, we have that 33 g/l corresponds to (33 g/l) / (58.4 g/mol)
= 0.565 mol/l of NaCl. However, when dissolved in water, NaCl splits in two ions, Na+ and
Cl−. Now, 1 l of water is 55.5 mol (= (1000 g) / (18 g/mol)). Thus, 1 l of seawater consists of
approximately 0.565 mol/l Na+, 0.565 mol/l Cl− and 55.5 mol water, and the corresponding
mole fractions are approximately 0.01 (Na+), 0.01 (Cl−) and 0.98 (H2O). The total mole
fraction of dissolved components in seawater is then xB = xNa + xCl = 0.01 + 0.01 = 0.02.

Water has a boiling point of T ∗
b = 373.15 K (100 oC) and the heat of vaporization at the

boiling point is ∆vapH = 40.66 kJ/mol. Thus, from (7.37) the boiling point elevation is

∆Tb = Tb − T ∗
b =

8.31 · 373.152 · 0.02

40666
K = 0.57K

so the boiling point of seawater is about 100.57 oC.
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Water has a freezing (melting) point of T ∗
m = 273.15 K (0 oC) and the heat of fusion

(melting) at the freezing point is ∆fusH = 6.01 kJ/mol. Thus, from (7.38) the freezing point
depression is

∆Tm = T ∗
m − Tm =

8.31 · 273.152 · 0.02

6010
K = 2.06K

so the freezing point of seawater is about −2.06oC.

Exercise 7.7 Adding 7 g of an unknown solute to 100 g water gives a boiling point elevation
of 0.34 oC. Estimate the molar mass of the unknown solute, and the corresponding freezing
point depression.

7.4.6 VLE for dilute mixtures: Henry’s law

Raoult’s law cannot be used for “supercritical” components (“gases”), where T is above
the critical temperature Tc for the component. This is because psat(T ) is only defined
for T ≤ Tc. However, also supercritical components have a solubility in liquids. For
example CO2 can be dissolved in water at 50oC even though the critical temperature
for CO2 is 31oC. “Fortunately,” the concentration in the liquid phase of supercritical
(and other “light”) components is usually low. For sufficiently dilute mixtures (low
concentrations), there is a generally linear relationship between a component’s gas
phase fugacity (“thermodynamic partial pressure”) and its liquid concentration, even
for nob-ideal mixtures. This gives Henry’s law, which also applies to supercritical
components,

Henry′s law : fV
i = Hi(T ) · xi (xi → 0) (7.39)

Here, Henry’s constant Hi [bar] is a function of temperature only (at least at pressure
below 50 bar; at very high pressures we need to include the “Poynting factor” for the
pressure’s influence on the liquid phase). If the pressure p is sufficiently low, we can
assume ideal gas phase where fV

i = pi = yip (the partial pressure), and Henry’s law
(7.39) becomes

yi =
Hi

p
xi (xi → 0, low p) (7.40)

Henry’s law on the form (7.40) is valid for dilute solutions (xi < 0.03, typically) and low
pressures (p < 20 bar, typically). For an ideal mixture (liquid phase), Henry’s constant
Hi equals the component’s vapor pressure (compare (7.33) and (7.40)), and Henry’s
constant is therefore expected to increase with temperature. Thus, the solubility is
expected to be lower at high temperature. However, there are exceptions to this rule,
as seen below for the solubility of H2 andN2 in ammonia.

Water. Henry’s constant for the solubility of some gases in water at 0oC and 25oC
is given in Table 7.1. Note from the critical data on page 416 that most of these
gases are supercritical at these temperatures. Thus, they cannot form a pure liquid
phase, but they can dissolve in liquid water. In all cases, Henry’s constant increases
with temperature. For example, for the solubility of CO2 in water, Henry’s constant
increases from 740 bar at 0oC, to 1670 bar at 25oC and to 3520 bar at 60 oC.

Ammonia. The following values for Henry’s constant for the solubility of H2 and
N2 in ammonia were obtained using the SRK equation of state with interaction
parameters kij = 0.226 between ammonia and nitrogen and kij = 0 between ammonia
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Table 7.1: Henry’s constant for the solubility of some gases in water

component Hi [bar] Hi [bar]
i (0oC) (25oC)

H2 58200 71400
N2 53600 84400
CO 35700 60000
O2 25800 44800

CH4 22700 41500
C2H4 5570 11700
CO2 740 1670
Cl2 − 635
H2S 270 545

and hydrogen:
Component Hi [bar] Hi [bar]

i (−25oC) (25oC)
H2 48000 15200
N2 26000 8900

We note that Hi for both components decrease by a factor of about 3 as the
temperature is increased from −25oC to 25oC. We then have the unexpected result
that the solubility of these gases in ammonia is higher at high temperature.

Example 7.16 The partial pressure of CO2 over a water solution at 25 oC is 3 bar. Task:
(a) Calculate the concentration of CO2 in the solution [mol/l]. (b) Find the volume of CO2(g)
at 1 atm and 25 oC that is dissolved in 1 l solution.

Solution. (a) We assume ideal gas and dilute solution. From Henry’s law, we have that
pi = Hixi, where Hi = 1670 bar (Table 7.1) and pi = 3 bar. This gives xi = 3/1670 = 0.0018
[mol CO2/ mol] (which confirms that we have a dilute solution). In 1 l of solution the amount
of water is (1 kg)/ (18·10−3 kg/mol) = 55.5 mol. That is, the concentration of CO2 is
ci = xi · 55.5 mol/l = 0.10 mol/l.

(b) The molar volume of an ideal gas at 1 atm and 25 oC is Vm = RT/p = 8.31 ·
298.15/1.01325 · 105 = 0.02445 m3/mol = 24.45 l/mol. In 1 l solution, there is 0.10 mol
CO2, and the corresponding volume of this as gas at 1 atm is then 2.45 l.

7.4.7 VLE for real (non-ideal) mixtures

In this section, we summarize the equations used for calculation of vapor/liquid
equilibrium for non-ideal mixtures. It is intended to give an overview, and you need to
consult other books for practical calculations. Three fundamentally different methods
are

1. Based on K values
2. Based on activity coefficients (for non-ideal mixtures of sub-critical components at

moderate pressures)
3. Based on the same equation of state for both phases (for moderately non-ideal

mixtures at all pressures)
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1. K-value

The K-value is defined for each component as the ratio

Ki =
yi

xi
(7.41)

where xi is the mole fraction in the liquid phase and yi is the mole fraction in the gas
phase at equilibrium. Generally, the “K value” is a function of temperature T , pressure
p and composition (xi and yi). For ideal liquid mixtures and ideal gas, we have from
(7.33) that Ki = psat

i (T )/p, that is, the K value is independent of composition. For
dilute mixtures, even non-ideal, we have from Henry’s law (7.40) that Ki = Hi(T ).
More generally, the K-value can be calculated from one of the two methods given
below.

2. Activity coefficient

This method provides a generalization of Raoult’s law to non-ideal mixtures and
to real gases. From the general VLE-condition µg,i = µl,i we derive for mixtures of
subcritical components: (the proof follows the derivation given for Raoult’s law on
page 182)

φV
i · yi · p

︸ ︷︷ ︸

fV
i

= γi · xi · φsat
i · psat

i (T ) · exp

[

1

RT

∫ p

psat
i

V̄ L
i dp

]

︸ ︷︷ ︸

fL
i

(7.42)

where fV
i is the fugacity in the vapor phase and fL

i is the fugacity in the liquid phase.
The fugacity coefficients φV

i (T, p, yi) and φsat
i (T ) are 1 for ideal gases, and for real

gases their value are usually computed from an equation of state for the gas phase,
e.g., SRK. The activity coefficients γi depend mainly on the liquid composition
(xi) and are usually computed from empirical equations, such as the Wilson, NRTL,
UNIQUAC and UNIFAC equations, based on experimental interaction data for all
binary combinations. The exception is the UNIFAC equation which only requires
interaction data for the groups in the molecule. The last exponential term is the
so-called Poynting factor for the pressure’s influence on the liquid phase (see the
derivation for Raoult’s law on page 182). It is close to 1, except at high pressures
above about 50 bar.

At moderate pressures (typically, less than 10 bar) we can assume ideal gas, φV
i = 1

and φsat
i = 1, and from (7.42) we derive a commonly used relation:

Nonideal mixture at moderate pressures : yip = γixip
sat
i (7.43)

For low concentrations of supercritical components we can use Henry’s law, yip =
Hixi. For an ideal liquid mixture we have γi = 1 and we rederive from (7.43) Raoult’s
law: yip = xip

sat
i .

3. Same equation of state for both phases

For mixtures that do deviate too much from the ideal (for example, for hydrocarbon
mixtures), we can use the same reference state (ideal gas) and the same equation
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of state for both phases (for example, the SRK equation), and the VLE-condition
µg,i = µl,i gives

φV
i yi = φL

i xi (7.44)

where the fugacity coefficients φV
i and φL

i are determined from the equation of state.
The K value is then Ki = φL

i /φV
i . Note that (7.44) can also be used for supercritical

components.

7.5 Flash calculations

p, T
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L

z

x
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i

i

Figure 7.4: Flash tank

Flash calculations are used for processes with vapor/liquid-equilibrium (VLE). A
typical process that requires flash calculations, is when a feed stream (F ) is separated
into a vapor (V ) and liquid (L) product; see Figure 7.4.

In principle, flash calculations are straightforward and involve combining the VLE-
equations with the component mass balances, and in some cases the energy balance.
Some flash calculations are (with a comment on their typical numerical solution or
usage):

1. Bubble point at given T (easy)
2. Bubble point at given p (need to iterate on T )
3. Dew point at given T (easy)
4. Dew point at given p (need to iterate on T )
5. Flash at given p and T (relatively easy)
6. Flash at given p and H (“standard” flash, e.g., for a flash tank after a valve)
7. Flash at given p and S (e.g., for condensing turbine)
8. Flash at given U and V (e.g., for dynamic simulation of an adiabatic flash drum)

The last three flashes are a bit more complicated as they require the use of the energy
balance and relationships for computing H , S, etc. The use of flash calculations is best
illustrated by some examples. Here, we assume that the VLE is given on K-value form,
that is,

yi = Kixi
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Table 7.2: Data for flash examples and exercises: Antoine parameters for psat(T ), normal
boiling temperature (Tb) and heat of vaporization ∆vapH(Tb) for selected components. Data:
Poling, Prausnitz and O’Connell, The properties of gases and liquids, 5th Ed., McGraw-Hill (2001).

% log10(psat[bar])=A-B/(T[K]+C) Tb[K] dvapHb [J/mol]
A1=3.97786; B1=1064.840; C1=-41.136; Tb1=309.22; dvapHb1=25790; % pentane C5H12
A2=4.00139; B2=1170.875; C2=-48.833; Tb2=341.88; dvapHb2=28850; % hexane C6H14
A3=3.93002; B3=1182.774; C3=-52.532; Tb3=353.93; dvapHb3=29970; % cyclohex C6H12
A4=5.20277; B4=1580.080; C4=-33.650; Tb4=337.69; dvapHb4=35210; % methanol CH3OH
A5=5.11564; B5=1687.537; C5=-42.98; Tb5=373.15; dvapHb5=40660; % water H2O
A6=4.48540; B6= 926.132; C6=-32.98; Tb6=239.82; dvapHb6=23350; % ammonia NH3
A7=3.92828; B7= 803.997; C7=-26.11; Tb7=231.02; dvapHb7=19040; % propane C3H8
A8=4.05075; B8=1356.360; C8=-63.515; Tb8=398.82; dvapHb8=34410; % octane C8H18
A9=4.12285; B9=1639.270; C9=-91.310; Tb9=489.48; dvapHb9=43400; % dodecane C12H26
A10=3.98523; B10=1184.24; C10=-55.578; Tb10=353.24; dvapHb11=30720; % benzene C6H6
A11=4.05043; B11=1327.62; C11=-55.525; Tb11=383.79; dvapHb11=33180; % toluene C7H8

where yi is the vapor phase mole fraction and xi the liquid phase mole fraction for
component i. In general, the “K-value” Ki depends on temperature T , pressure p and
composition (both xi and yi). We mostly assume ideal mixtures, and use Raoult’s law.
In this case Ki depends on T and p only:

Raoult′s law : Ki = psat
i (T )/p

In the examples, we compute the vapor pressure psat(T ) using the Antoine parameters
given in Table 7.2.

7.5.1 Bubble point calculations

Let us first consider bubble point calculations, In this case the liquid-phase
composition xi is given (it corresponds to the case where V is very small (V ? 0)
and xi = zi in Figure 7.4). The bubble point of a liquid is the point where the liquid
just starts to evaporate (boil), that is, when the first vapor bubble is formed. If the
temperature is given, then we must lower the pressure until the first bubble is formed.
If the pressure is given, then we must increase the temperature until the first bubble
is formed. In both cases, this corresponds to adjusting T or p until the computed sum
of vapor fractions is just 1, Σyi = 1 or

ΣiKixi = 1 (7.45)

where xi is given. For the ideal case where Raoult’s law holds this gives

Σi xip
sat
i (T )

︸ ︷︷ ︸

pi

= p (7.46)

Example 7.17 Bubble point at given temperature T . A liquid mixture contains 50%
pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,

x1 = 0.5; x2 = 0.3; x3 = 0.2
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At T = 400 K, the pressure is gradually decreased. What is the bubble pressure and
composition of the first vapor that is formed? Assume ideal liquid mixture and ideal gas
(Raoult’s law).

Solution. The task is to find a p that satisfies (7.46). Since T is given, this is trivial; we
can simply calculate p from (7.46). We start by computing the vapor pressures for the three
components at T = 400K. Using the Antoine data in Table 7.2, we get:

psat
1 (400K) = 10.248 bar

psat
2 (400K) = 4.647 bar

psat
3 (400K) = 3.358 bar

At the bubble point, the liquid phase composition is given, so the partial pressure of each
component is

p1 = x1p
sat
1 = 5.124 bar

p2 = x2p
sat
2 = 1.394 bar

p3 = x3p
sat
3 = 0.672 bar

Thus, from (7.46) the bubble pressure is

p = p1 + p2 + p3 = 7.189 bar

Finally, the vapor composition (composition of the first vapor bubble) is

y1 =
p1

p
= 0.713; y2 =

p2

p
= 0.194; y3 =

p3

p
= 0.093

For calculation details see the MATLAB code:

T=400; x1=0.5; x2=0.3; x3=0.2
psat1=10^(A1-B1/(T+C1)), psat2=10^(A2-B2/(T+C2)), psat3=10^(A3-B3/(T+C3))
p1=x1*psat1, p2=x2*psat2, p3=x3*psat3, p=p1+p2+p3
y1=p1/p, y2=p2/p, y3=p3/p

Example 7.18 Bubble point at given pressure p. Consider the same liquid mixture
with 50% pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%). A p = 5
bar, the temperature is gradually increased. What is the bubble temperature and composition
of the first vapor that is formed?

Solution. In this case, p and xi are given, and (7.46) provides an implicit equation for T
which needs to be solved numerically, for example, by iteration. A straightforward approach
is to use the method from the previous example, and iterate on T until the bubble pressure is
5 bar (for example, using the MATLAB code below). We find T = 382.64 K, and

y1 =
p1

p
= 0.724; y2 =

p2

p
= 0.187; y3 =

p3

p
= 0.089

% MATLAB:
x1=0.5; x2=0.3; x3=0.2; p=5;
T=fzero(@(T) p-x1*10^(A1-B1/(T+C1))-x2*10^(A2-B2/(T+C2))-x3*10^(A3-B3/(T+C3)) , 400)

7.5.2 Dew point calculations

Let us next consider dew point calculations. In this case the vapor-phase composition
yi is given (it corresponds to the case where L is very small (L ? 0) and yi = zi in
Figure 7.4). The dew point of a vapor (gas) is the point where the vapor just begins
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to condense, that is, when the first liquid drop is formed. If the temperature is given,
then we must increase the pressure until the first liquid is formed. If the pressure is
given, then we must decrease the temperature until the first liquid is formed. In both
cases, this corresponds to adjusting T or p until Σxi = 1 or

Σiyi/Ki = 1 (7.47)

where yi is given. For an ideal mixture where Raoult’s law holds this gives

Σi
yi

psat
i (T )

=
1

p
(7.48)

Example 7.19 Dew point at given temperature T . A vapor mixture contains 50%
pentane (1), 30% hexane (2) and 20% cyclohexane (3) (all in mol-%), i.e.,

y1 = 0.5; y2 = 0.3; y3 = 0.2

At T = 400 K, the pressure is gradually increased. What is the dew point pressure and
the composition of the first liquid that is formed? Assume ideal liquid mixture and ideal gas
(Raoult’s law).

Solution. The task is to find the value of p that satisfies (7.48). Since T is given, this is
trivial; we can simply calculate 1/p from (7.48). With the data from Example 7.17 we get:

1

p
=

0.5

10.248
+

0.3

4.647
=

0.2

3.358
= 0.1729bar−1

and we find p = 5.78 bar. The liquid phase composition is xi = yip/psat
i (T ) and we find

x1 =
0.5 · 5.78

10.248
= 0.282, x2 =

0.3 · 5.78

4.647
= 0.373, x3 =

0.2 · 5.78

3.749
= 0.345

% MATLAB:
T=400; y1=0.5; y2=0.3; y3=0.2
psat1=10^(A1-B1/(T+C1)), psat2=10^(A2-B2/(T+C2)), psat3=10^(A3-B3/(T+C3))
p=1/(y1/psat1 + y2/psat2 + y3/psat3)
x1=y1*p/psat1, x2=y2*p/psat2, x3=y3*p/psat3

Example 7.20 Dew point at given pressure p. Consider the same vapor mixture with
50% pentane (1), 30% hexane (2) and 20% cyclohexane (3). At p = 5 bar, the temperature is
gradually decreased. What is the dew point temperature and the composition of the first liquid
that is formed?

Solution. In this case, p and yi are given, and (7.48) provides an implicit equation for
T which needs to be solved numerically (e.g., using the MATLAB code below). We find
T = 393.30 K, and from xi = yip/psat

i (T ) we find

x1 = 0.278; x2 = 0.375; x3 = 0.347

% MATLAB:
y1=0.5; y2=0.3; y3=0.2; p=5;
T=fzero(@(T) 1/p-y1/10^(A1-B1/(T+C1))-y2/10^(A2-B2/(T+C2))-y3/10^(A3-B3/(T+C3)) , 400)

Example 7.21 Dew point with non-condensable components. Calculate the
temperature and composition of a liquid in equilibrium with a gas mixture containing 10%
pentane (1), 10% hexane and 80% nitrogen (3) at 3 bar. Nitrogen is far above its critical
point and may be considered non-condensable.
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Solution. To find the dew-point we use Σixi = 1. However, nitrogen is assumed non-
condensable so x3 = 0. Thus, this component should not be included in (7.48), which becomes

y1

psat
1 (T )

+
y2

psat
2 (T )

=
1

p

Solving this implicit equation in T numerically (e.g., using the MATLAB code below) gives
T = 314.82K and from xi = yip/psat

i (T ) the liquid composition is

x1 = 0.245; x2 = 0.755; x3 = 0

7.5.3 Flash with liquid and vapor products

Next, consider a flash where a feed F (with composition zi) is split into a vapor
product V (with composition yi) and a liquid product (with composition xi); see
Figure 7.4 on page 189. For each of the Nc components, we can write a material
balance

Fzi = Lxi + V yi (7.49)

In addition, the vapor and liquid is assumed to be in equilibrium,

yi = Kixi

The K-values Ki = Ki(T, P, xi, yi) are computed from the VLE model. In addition,
we have the two relationships Σixi = 1 and Σiyi = 1. With a given feed (F, zi), we
then have 3Nc +2 equations in 3Nc +4 unknowns (xi, yi, Ki, L, V, T, p). Thus, we need
two additional specifications, and with these the equation set should be solvable.

pT -flash

The simplest flash is usually to specify p and T (pT -flash), because Ki depends
mainly on p and T . Let us show one common approach for solving the resulting
equations, which has good numerical properties. Substituting yi = Kixi into the
mass balance (7.49) gives Fzi = Lxi + V Kixi, and solving with respect to xi gives
xi = (Fzi/(L + V Ki). Here, introduce L = F − L (total mass balance) to derive

xi =
zi

1 + V
F (Ki − 1)

Here, we cannot directly calculate xi because the vapor split V/F is not known. To
find V/F we may use the relationship Σixi = 1 or alternatively Σiyi = ΣiKixi = 1.
However, it has been found that the combination Σi(yi−xi) = 0 results in an equation
with good numerical properties; this is the so-called Rachford-Rice flash equation5

Σi
zi(Ki − 1)

1 + V
F (Ki − 1)

= 0 (7.50)

which is a monotonic function in V/F and is thus easy to solve numerically. A physical
solution must satisfy 0 ≤ V/F ≤ 1. If we assume that Raoult’s holds, then Ki depends

5 Rachford, H.H. and Rice, J.D.: “Procedure for Use of Electrical Digital Computers in Calculating
Flash Vaporization Hydrocarbon Equilibrium,” Journal of Petroleum Technology, Sec. 1, p. 19,
Oct. 1952.
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on p and T only: Ki = psat
i (T )/p. Then, with T and p specified, we know Ki and the

Rachford-Rice equation (7.50) can be solved for V/F . For non-ideal cases, Ki depends
also on xi and yi, so one approach is add an outer iteration loop on Ki.

Example 7.22 pT -flash. A feed F is split into a vapor product V and a liquid product L
in a flash tank (see Figure 7.4 on page 189). The feed is 50% pentane, 30% hexane and 20%
cyclohexane (all in mol-%). In the tank, T = 390K and p = 5 bar. For example, we may have
a heat exchanger that keeps constant temperature and a valve on the vapor product stream
that keeps constant pressure. We want to find the product split and product compositions.
Assume ideal liquid mixture and ideal gas (Raoult’s law).

Comment. This is a quite close-boiling mixture and we have already found that at 5 bar the
bubble point temperature is 382.64 K (Example 7.18) and the dew point temperature is 393.30
K (Example 7.20). The temperature in the flash tank must be between these temperatures for
a two-phase solution to exist (which it does in our case since T = 390 K).

Solution. The feed mixture of pentane (1), hexane (2) and cyclohexane (3) is

z1 = 0.5; z2 = 0.3; z3 = 0.2

We have Ki = psat
i (T )/p and at T = 390K and p= 5 bar, we find with the Antoine parameters

in Table 7.2:
K1 = 1.685, K2 = 0.742, K3 = 0.532

Now, zi and Ki are known, and the Rachford-Rice equation (7.50) is solved numerically to
find the vapor split V/F = 0.6915. The resulting liquid and vapor compositions are (for details
see the MATLAB code below):

x1 = 0.3393, x2 = 0.3651, x3 = 0.2956

y1 = 0.5717, y2 = 0.2709, y3 = 0.1574

% MATLAB:
z1=0.5; z2=0.3; z3=0.2; p=5; T=390;
psat1=10^(A1-B1/(T+C1)); psat2=10^(A2-B2/(T+C2)); psat3=10^(A3-B3/(T+C3));
K1=psat1/p; K2=psat2/p; K3=psat3/p; k1=1/(K1-1); k2=1/(K2-1); k3=1/(K3-1);
% Solve Rachford-Rice equation numerically to find a=V/F:
a=fzero(@(a) z1/(k1+a) + z2/(k2+a) + z3/(k3+a) , 0.5)
x1=z1/(1+a*(K1-1)), x2=z2/(1+a*(K2-1)), x3=z3/(1+a*(K3-1))
y1=K1*x1, y2=K2*x2, y3=K3*x3

Example 7.23 Condenser and flash drum for ammonia synthesis. The exit gas from
an ammonia reactor is at 250 bar and contains 61.5% H2, 20.5% N2 and 18% NH3. The gas
is cooled to 25oC (partly condensed), and is then separated in a flash drum into a recycled
vapor stream V and a liquid product L containing most of the ammonia. We want to calculate
the product compositions (L and V ) from the flash drum.

Data. In spite of the high pressure, we assume for simplicity ideal gas. Use vapor pressure
data for ammonia from Table 7.2 and Henry’s law coefficients for N2 and H2 from page 187.
For ammonia, we assume ideal liquid mixture, i.e., γNH3 = 1 (which is reasonable since the
liquid phase is almost pure ammonia).

Solution. The feed mixture of H2 (1), N2 (2) and NH3 (3) is

z1 = 0.615, z2 = 0.205, z3 = 0.18

For ammonia, we have at T = 298.15 K and p = 250 bar (Raoult’s law):

K3 =
psat
3 (T )

p
=

9.83 bar

250 bar
= 0.0393
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For H2 and N2, we have from the given data for Henry’s coefficient at 25oC (298.15 K):

K1 =
H1(T )

p
=

15200 bar

250 bar
= 60.8

K2 =
H2(T )

p
=

8900 bar

250 bar
= 35.6

Now, zi and Ki are known, and the Rachford-Rice equation (7.50) is solved numerically to
find the vapor split V/F = 0.8500. The resulting liquid and vapor compositions of the products
are

x1 = 0.0119, x2 = 0.0067, x3 = 0.9814

y1 = 0.7214, y2 = 0.2400, y3 = 0.0386

This agrees well with flow sheet data from a commercial ammonia plant.

Other flashes

For other flashes, like the pH-flash (which is relevant for an adiabatic flash tank), one
must include also the energy balance. For example, for an adiabatic flash tank, the
steady-state energy balance gives that the enthalpy H is constant. That is, Hin = Hout,
and we get

FhF
︸︷︷︸

H

= V hV + LhL (7.51)

where hV and hL [kJ/mol; kJ/kg] depend primarily on T , but in general also on xi, yi

and p. One solution approach is to use the pT -flash described above, and iterate on T
in an outer loop until the requirement on H is satisfied. Another approach is to solve
the equations simultaneously, as shown for the dynamic adiabatic flash of methanol
and ethanol in Example 11.18 (page 317).

7.5.4 Flash exercises

Exercise 7.8 ∗ Bubble and dew point at given temperature. A hydrocarbon mixture
contains 10% propane, 80% hexane and 10% dodecane. (a) Find the bubble point pressure at
300 K. (b) Find the dew point pressure at 300 K.

Exercise 7.9 ∗ Bubble and dew point at given pressure. A hydrocarbon mixture
contains 10 mol-% propane, 80% hexane and 10% dodecane. (a) Find the bubble point
temperature at 1 bar. (b) Find the dew point temperature at 1 bar.

Exercise 7.10 Bubble point at given pressure. A liquid mixture contains 4 mol-%
hexane and the rest is octane. What is the composition of the first vapor formed if the total
pressure is 1 atm?

Exercise 7.11 ∗ Flash at given p and T . A feed to a flash tank is 100 mol/s and contains
10% propane, 80% hexane and 10% dodecane. Find the amount of vapor product and the
compositions when T = 350K and p = 2bar.

Exercise 7.12 Flash calculation for binary mixture. Calculate the amount of liquid
that will remain at equilibrium when a mixture of 7 kg hexane and 3 kg toluene is vaporized
at 95oC and 1.5 bar.

Data: Molecular weights are 86.17 and 92.13.
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Exercise 7.13 ∗ Bubble and dew point calculations. (a) A gas mixture of 15 mol-%
benzene, 5 mol-% toluene and the rest nitrogen is compressed isothermally at 100oC until
condensation occurs. What will be the composition of the initial condensate?

(b) Calculate the temperature and composition of a vapor in equilibrium with a liquid that
is 25 mol-% benzene and 75 mol-% toluene at 1 atm. Is this a bubble point or a dew point?

(c) Calculate the temperature and composition of a liquid in equilibrium with a gas
mixture containing 15 mol-% benzene, 25 mol-% toluene and the rest nitrogen (which may be
considered non-condensable) at 1 atm. Is this a bubble point or a dew point?

Exercise 7.14 Condenser for exhaust gas. The exhaust gas from a natural gas power
plant is at 1 bar and contains 76% N2 (1), 12% O2 (2), 4% CO2 (3) and 8% H2O (4). The
gas is cooled to 25oC (partly condensed), and is then separated in a flash drum into a gas
product V and a liquid product L containing most of the water. Find the compositions of the
product streams. Are we able to remove any significant amount of CO2 in the water?

Data: Use pure component vapor pressure data for water and Henry’s law coefficients for
the gas components (see page 187).




