
SNS COLLEGE OF TECHNOLOGY
Coimbatore – 35

An Autonomous Institution
Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

23ITT101 – PROGRAMMING IN C & DATA STRUCTURES

I YEAR - II SEM

UNIT II – DECISION STATEMENTS & FUNCTIONS

CALL BY VALUE & CALL BY REFERENCE

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT 1

2

Introduction

✓ In C, a function specifies the modes of parameter passing to it.

✓There are two ways to specify function calls:

▪ CALL BY VALUE

▪ CALL BY REFERENCE

✓ In call by value, the function parameters gets the copy of actual parameters which means

changes made in function parameters did not reflect in actual parameters.

✓ In call by reference, the function parameter gets reference of actual parameter which means

they point to similar storage space and changes made in function parameters will reflect in

actual parameters.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

3

Introduction

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

4

Call by Value

In call by value method, the value of the actual parameters is copied into the formal

parameters.

In other words, we can say that the value of the variable is used in the function call in the call by

value method.

In call by value method, we can not modify the value of the actual parameter by the formal

parameter.

In call by value, different memory is allocated for actual and formal parameters since the value of

the actual parameter is copied into the formal parameter.

The actual parameter is the argument which is used in the function call whereas formal parameter

is the argument which is used in the function definition.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

5

Example

#include <stdio.h>

void swap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

int main()
{

int x = 10;
int y = 11;
printf("Values before swap: x = %d, y = %d\n", x,y);
swap(x,y);
printf("Values after swap: x = %d, y = %d", x,y);

}

We can observe that even when we

change the content of x and y in the

scope of the swap function, these

changes do not reflect on x and y

variables defined in the scope of main.

This is because we call swap() by

value and it will get separate memory

for x and y so the changes made in

swap() will not reflect in main().

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

6

Call by Reference

• Calling a function by reference will give function parameter the address of original parameter

due to which they will point to same memory location and any changes made in the function

parameter will also reflect in original parameters.

• In call by reference, the address of the variable is passed into the function call as the actual

parameter.

• The value of the actual parameters can be modified by changing the formal parameters since the

address of the actual parameters is passed.

• In call by reference, the memory allocation is similar for both formal parameters and actual

parameters. All the operations in the function are performed on the value stored at the address of

the actual parameters, and the modified value gets stored at the same address.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

7

Example

#include <stdio.h>

void swap(int *x, int *y)

{

int temp = *x;

*x = *y;

*y = temp;

}

int main()

{

int x = 10; int y = 11;

printf("Values before swap: x = %d, y = %d\n", x,y);

swap(&x,&y);

printf("Values after swap: x = %d, y = %d", x,y);

}

We can observe in function parameters

instead of using int x,int y we used int

*x,int *y and in function call instead of

giving x,y, we give &x,&y this

methodology is call by reference as we

used pointers as function parameter which

will get original parameters' address

instead of their value. & operator is used

to give address of the variables and * is

used to access the memory location that

pointer is pointing. As the function

variable is pointing to the same memory

location as the original parameters, the

changes made in swap() reflect in main()

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

8

Difference between Call by value & Call by Reference

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT 9

When to use Call by value & Call by Reference

Copying is expensive, and we have to use our resources wisely. Imagine copying a large object

like an array with over a million elements only to enumerate the values inside the array, doing so

will result in a waste of time and memory. Time is valuable and we can omit to copy when:

We intend to read state information about an object,

or

Allow a function to modify the state of our object.

However, when we do not intend our function to alter the state of our object outside of our

function, copying prevents us from making unintentional mistakes and introduce bugs.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT 10

Advantages of Call by Value

✓Guarantees that changes that alter the behaviour of a parameter stay within its scope and do not

affect the value of an object passed into the function.

✓Reduce the chance of introducing subtle bugs which can be difficult to monitor.

✓ Passing by value removes the possible side effects of a function which makes your program

easier to maintain and reason with.

Disadvantages of Call by Value

❑Incurs performance penalty when copying large objects.

❑Requires to reallocate memory with the same size as the object passed into the function.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT 11

Advantages of Call by Reference

✓ Calling a function by reference does not incur performance penalties that copying would

require. Likewise, it does not duplicate the memory necessary to access the content of an

object that resides in our program.

✓ Allows a function to update the value of an object that is passed into it.

✓ Allows you to pass functions as references through a technique called function pointers which

may alter the behavior of a function. Likewise, lambda expressions may also be passed inside

a function. Both enable function composition which has neat theoretical properties.

Disadvantages of Call by Reference

❑ For every function that shares with the same object, your responsibility of tracking each

change also expands.

❑ Making sure that the object does not die out abruptly is a serious issue about calling a function

by reference. This is especially true in the context of a multithreaded application.

Call by Value & Reference / Unit - II / C & DS / Priyanga S / MCA / SNSCT 12

Conclusion

✓ There are two ways to pass an argument in C: passing by value and passing by reference. Also known as

call by value and call by reference in C.

✓ Passing by value copies the content of an object that is being passed into the function. This results in an

independent object that exists within the scope of that function. This provides a simpler way to think and

reason with our program as we do not allow the function to modify the contents of an object.

✓ Passing by reference elides copying and instead passes the memory address of an object. A function may

be granted with the privileges to modify the values of an object that is passed onto it.

✓ Passing by reference enables a function to accept functions and lambda expressions.

✓ Managing object references within the program can be difficult to maintain, which may incur a less

maintainable codebase.

	Slide 1: SNS COLLEGE OF TECHNOLOGY Coimbatore – 35 An Autonomous Institution Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

