
1

SNS COLLEGE OF TECHNOLOGY
Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A++’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF INFORMATION TECHNOLOGY

19ITE310 - MOBILE APPLICATION DEVELOPMENT
III YEAR - VI SEM

UNIT 4 - SPRUCING UP MOBILE APPS SPRUCING UP MOBILE APPS

Broadcast & APIs/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

UNIT – 4
SPRUCING UP MOBILE APPS SPRUCING UP MOBILE APPS

Graphics and animation – Custom views – canvas - animation APIs -

multimedia – audio/video - playback and record - location awareness,

and native hardware access (sensors such as accelerometer and

gyroscope)

Lab Experiments:

1. Develop a native application that uses GPS location information.

2. To develop a Simple Android Application that draws basic Graphical

Primitives on the screen.(Line,

Square, Rectangle and Circle)

2Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Graphics and animation

3Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Animation in android is possible from many ways. In this chapter we will discuss one easy and widely used

way of making animation called tweened animation.

• Tween Animation

• Tween Animation takes some parameters such as start value , end value, size , time duration , rotation angle

e.t.c and perform the required animation on that object. It can be applied to any type of object. So in order

to use this , android has provided us a class called Animation.

• In order to perform animation in android , we are going to call a static function loadAnimation() of the class

AnimationUtils. We are going to receive the result in an instance of Animation Object. Its syntax is as

follows −

• Animation animation = AnimationUtils.loadAnimation(getApplicationContext(), R.anim.myanimation);

• This animation class has many useful functions which are listed below package

com.example.sairamkrishna.myapplication;−

Graphics and animation

4Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No Method & Description

1 start() -This method starts the animation.

2
setDuration(long duration)- This method sets the duration of an

animation.

3
getDuration() -This method gets the duration which is set by above

method

4 end()- This method ends the animation.

5 cancel() -This method cancels the animation.

Graphics and animation

5Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• import android.app.Activity;

• import android.os.Bundle;

• import android.view.View;

• import android.view.animation.Animation;

• import android.view.animation.AnimationUtils;

• import android.widget.ImageView;

• import android.widget.Toast;

Graphics and animation

6Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• public class MainActivity extends Activity {

• @Override

• protected void onCreate(Bundle savedInstanceState) {

• super.onCreate(savedInstanceState);

• setContentView(R.layout.activity_main);

• }

•

• public void clockwise(View view){

• ImageView image = (ImageView)findViewById(R.id.imageView);

• Animation animation = AnimationUtils.loadAnimation(getApplicationContext(),

• R.anim.myanimation);

• image.startAnimation(animation);

• }

Graphics and animation

7Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• public void fade(View view){

• ImageView image = (ImageView)findViewById(R.id.imageView);

• Animation animation1 =

• AnimationUtils.loadAnimation(getApplicationContext(),

• R.anim.fade);

• image.startAnimation(animation1);

• }

• public void blink(View view){

• ImageView image = (ImageView)findViewById(R.id.imageView);

• Animation animation1 =

• AnimationUtils.loadAnimation(getApplicationContext(),

• R.anim.blink);

• image.startAnimation(animation1)

Graphics and animation

8Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• public void move(View view){

• ImageView image = (ImageView)findViewById(R.id.imageView);

• Animation animation1 =

• AnimationUtils.loadAnimation(getApplicationContext(), R.anim.move);

• image.startAnimation(animation1);

• }

•

• public void slide(View view){

• ImageView image = (ImageView)findViewById(R.id.imageView);

• Animation animation1 =

• AnimationUtils.loadAnimation(getApplicationContext(), R.anim.slide);

• image.startAnimation(animation1);

• }

Custom views, canvas

9Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Android offers a great list of pre-built widgets like Button, TextView,

EditText, ListView, CheckBox, RadioButton, Gallery, Spinner,

AutoCompleteTextView etc. which you can use directly in your Android

application development, but there may be a situation when you are not

satisfied with existing functionality of any of the available widgets.

Android provides you with means of creating your own custom

components which you can customized to suit your needs.

Creating a Simple Custom Component

10Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Step Description

1

You will use Android studio IDE to create an Android application and name it as

myapplication under a package com.example.tutorialspoint7.myapplication as

explained in the Hello World Example chapter.

2
Create an XML res/values/attrs.xml file to define new attributes along with their data

type.

3 Create src/mainactivity.java file and add the code to define your custom component

4
Modify res/layout/activity_main.xml file and add the code to create Colour compound

view instance along with few default attributes and new attributes.

5
Run the application to launch Android emulator and verify the result of the changes

done in the application.

Custom views, canvas

11Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

•

<com.example.tutorialspoint7.myapplication.TimeView

• android:id="@+id/timeView"

• android:layout_width="match_parent"

• android:layout_height="wrap_content"

• android:textColor="#fff"

• android:textSize="40sp"

• custom:title="my time view"

• custom:setColor="true" />

•

• <TextView

• android:layout_width="match_parent"

• android:layout_height="wrap_content"

• android:id="@+id/simple"

• android:layout_below="@id/timeView"

• android:layout_marginTop="10dp"

• <?xml version="1.0" encoding="utf-8"?>

• <resources>

• <declare-styleable name="TimeView">

• <declare-styleable name="TimeView">

• <attr name="title" format="string" />

• <attr name="setColor" format="boolean"/>

• </declare-styleable>

• </declare-styleable>

• </resources>

• Change the layout file used by the activity to the following.

• <?xml version="1.0" encoding="utf-8"?>

• <RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/andro

id"

• xmlns:tools="http://schemas.android.com/tools"

• xmlns:custom="http://schemas.android.com/apk/res-

auto"

• android:layout_width="match_parent"

• android:layout_height="match_parent"

• tools:context=".MainActivity" >

Animation APIs

12Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The API allows to define for arbitrary object properties a start and end value and

apply a time-based change to this attribute. This API can be applied on any Java

object not only on Views.

• Animator and AnimatorListener

• The superclass of the animation API is the Animator class. Typically the

ObjectAnimator class is used to modify the attributes of an object.

• The ViewPropertyAnimator class introduced in Android 3.1 provides a simpler

access to typical animations which are performed on Views.

• The animate() method on a View will return the ViewPropertyAnimator object. This

object allows to perform simultaneous animations. It has a fluent API and allows to

set the duration of the animation.

• The target of ViewPropertyAnimator is to provide a very simple API for typical

animations.

• he following code shows an example of the usage of this method.

Animation APIs

13Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• // Using hardware layer

• myView.animate().translationX(400).withLayer();

• For performance optimization you can also let ViewPropertyAnimator use a

hardware layout.

• // Using hardware layer

• myView.animate().translationX(400).withLayer();

• You can also directly define a Runnable to be executed at the start and the end of

the animation.

Animation APIs

14Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• // StartAction

• myView.animate().translationX(100).withStartAction(new Runnable(){

• public void run(){

• viewer.setTranslationX(100-myView.getWidth());

• // Do something

• }

• });

• // EndAction

• myView.animate().alpha(0).withStartAction(new Runnable(){

• public void run(){

• // Remove the view from the layout called parent

• parent.removeView(myView);

• }

• });

Layout animations

15Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The LayoutTransition class allows to set animations on a layout container and a

changes on the Views of this container will be animated.

• package com.example.android.layoutanimation;

• import android.animation.LayoutTransition;

• import android.app.Activity;

• import android.os.Bundle;

• import android.view.Menu;

• import android.view.View;

• import android.view.ViewGroup;

• import android.widget.Button;

• public class MainActivity extends Activity {

• private ViewGroup viewGroup;

Layout animations

16Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• public void onCreate(Bundle savedInstanceState) {

• super.onCreate(savedInstanceState);

• setContentView(R.layout.activity_main);

• LayoutTransition l = new LayoutTransition();

• l.enableTransitionType(LayoutTransition.CHANGING);

• viewGroup = (ViewGroup) findViewById(R.id.container);

• viewGroup.setLayoutTransition(l);

• }

• public void onClick(View view) {

• viewGroup.addView(new Button(this));

• }

• @Override

• public boolean onCreateOptionsMenu(Menu menu) {

• getMenuInflater().inflate(R.menu.activity_main, menu);

• return true;

• }

• }

Animations for Activity transition PAGE TOP

17Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Animations can be applied to Views but it is also possible to apply them on the

transition between activities.

• The ActivityOptions class allows to define default or customer animations.

• public void onClick(View view) {

• Intent intent = new Intent(this, SecondActivity.class);

• ActivityOptions options = ActivityOptions.makeScaleUpAnimation(view, 0,

• 0, view.getWidth(), view.getHeight());

• startActivity(intent, options.toBundle());

• }

Multimedia

18Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Android Multimedia

• Android multimedia api deals in playing and controlling the audio and video.

• Playing Audio in android Example

• Playing Video in android Example

• Play and control the audio files in android by the help of MediaPlayer class.

• MediaPlayer class

• The android.media.MediaPlayer class is used to control the audio or video files.

• Methods of MediaPlayer class

Multimedia

19Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• There are many methods of MediaPlayer class. Some of them are as

follows:
Method Description

public void setDataSource(String path) sets the data source (file path or http url) to use.

public void prepare() prepares the player for playback synchronously.

public void start() it starts or resumes the playback.

public void stop() it stops the playback.

public void pause() it pauses the playback.

public boolean isPlaying() checks if media player is playing.

public void seekTo(int millis) seeks to specified time in miliseconds.

public void setLooping(boolean looping) sets the player for looping or non-looping.

public boolean isLooping() checks if the player is looping or non-looping.

public void selectTrack(int index) it selects a track for the specified index.

public int getCurrentPosition() returns the current playback position.

public int getDuration() returns duration of the file.

public void setVolume(float

leftVolume,float rightVolume)
sets the volume on this player.

Multimedia

20Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

•

• package com.example.audiomediaplayer1;

•

• import android.media.MediaPlayer;

• import android.net.Uri;

• import android.os.Bundle;

• import android.app.Activity;

• import android.view.Menu;

• import android.widget.MediaController;

• import android.widget.VideoView;

•

• public class MainActivity extends Activity {

•

• @Override

• protected void onCreate(Bundle savedInstanceState) {

• super.onCreate(savedInstanceState);

• setContentView(R.layout.activity_main);

•

• MediaPlayer mp=new MediaPlayer();

• try{

• mp.setDataSource("/sdcard/Music/maine.mp3");

Multimedia

21Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• //Write your location here

• mp.prepare();

• mp.start();

•

• }catch(Exception e){e.printStackTrace();}

•

• }

•

• @Override

• public boolean onCreateOptionsMenu(Menu menu) {

• // Inflate the menu; this adds items to the action bar if it is present.

• getMenuInflater().inflate(R.menu.activity_main, menu);

• return true;

• }

• }

Audio/video and images

22Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• MediaController and VideoView classes, we can play the video files in

android

• MediaController class

• The android.widget.MediaController is a view that contains media controls

like play/pause, previous, next, fast-forward, rewind etc.

• VideoView class

• The android.widget.VideoView class provides methods to play and control

the video player. The commonly used methods of VideoView class are as

follows:

Audio/video and images

23Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Method Description

public void

setMediaController(MediaController

controller)

sets the media controller to the video view.

public void setVideoURI (Uri uri) sets the URI of the video file.

public void start() starts the video view.

public void stopPlayback() stops the playback.

public void pause() pauses the playback.

public void suspend() suspends the playback.

public void resume() resumes the playback.

public void seekTo(int millis) seeks to specified time in miliseconds.

Playback and record

24Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Android provides many ways to control playback of audio/video files and

streams. One of this way is through a class called MediaPlayer.

• Android is providing MediaPlayer class to access built-in mediaplayer

services like playing audio,video e.t.c. In order to use MediaPlayer, we

have to call a static Method create() of this class. This method returns an

instance of MediaPlayer class. Its syntax is as follows

• MediaPlayer mediaPlayer = MediaPlayer.create(this, R.raw.song);

Playback and record

25Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The second parameter is the name of the song that you want to play. You

have to make a new folder under your project with name raw and place the

music file into it.

• Once you have created the Mediaplayer object you can call some methods

to start or stop the music. These methods are listed below.

• mediaPlayer.start();

• mediaPlayer.pause();

• On call to start() method, the music will start playing from the beginning.

If this method is called again after the pause() method, the music would

start playing from where it is left and not from the beginning.

Playback and record

26Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• In order to start music from the beginning, you have to call reset() method.

Its syntax is given below.

• mediaPlayer.reset();

• Apart from the start and pause method, there are other methods provided

by this class for better dealing with audio/video files. These methods are

listed below

Playback and record

27Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

1
isPlaying()

This method just returns true/false indicating the song is playing or not

2
seekTo(position)

This method takes an integer, and move song to that particular second

3
getCurrentDuration()

This method returns the current position of song in milliseconds

4
getDuration()

This method returns the total time duration of song in milliseconds

5
reset()

This method resets the media player

Playback and record

28Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

6
release()

This method releases any resource attached with MediaPlayer object

7
setVolume(float leftVolume, float rightVolume)

This method sets the up down volume for this player

8
setDataSource(FileDescriptor fd)

This method sets the data source of audio/video file

9

selectTrack(int index)

This method takes an integer, and select the track from the list on that particular

index

10
getTrackInfo()

This method returns an array of track information

MediaRecorder

29Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• 1. Requesting permission to record audio

• 2. Creating and running a MediaRecorder

• 3. Using MediaMuxer to record multiple channels

• 4. Adding metadata

• 5. Sample code

MediaRecorder

30Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The Android multimedia framework includes support for capturing and

encoding a variety of common audio and video formats. You can use the

MediaRecorder APIs if supported by the device hardware.

• This document shows you how to use MediaRecorder to write an

application that captures audio from a device microphone, save the audio,

and play it back

Creating and running a MediaRecorder

31Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Requesting permission to record audio

• To be able to record, app must tell the user that it will access the device's

audio input. <uses-permission

android:name="android.permission.RECORD_AUDIO" />

Creating and running a MediaRecorder

32Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Initialize a new instance of MediaRecorder with the following calls:

• Set the audio source using setAudioSource().

• Note: Most of the audio sources (including DEFAULT) apply processing to

the audio signal. To record raw audio select UNPROCESSED. Some

devices do not support unprocessed input. Call

AudioManager.getProperty("PROPERTY_SUPPORT_AUDIO_SOURCE_

UNPROCESSED") first to verify it's available. If it is not, try using

LOCATION AWARENESS

33Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Android location APIs make it easy for you to build location-aware

applications, without needing to focus on the details of the underlying

location technology.

• This becomes possible with the help of Google Play services, which

facilitates adding location awareness to your app with automated location

tracking, geofencing, and activity recognition.

• This tutorial shows you how to use Location Services in your APP to get

the current location, get periodic location updates, look up addresses etc.

The Location Object

34Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The Location object represents a geographic location which can consist of

a latitude, longitude, time stamp, and other information such as bearing,

altitude and velocity. There are following important methods which you

can use with Location object to get location specific information −

The Location Object

35Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No

.

Method & Description

1 float distanceTo(Location dest)

Returns the approximate distance in meters between this location and the given location.

2 float getAccuracy()

Get the estimated accuracy of this location, in meters.

3 double getAltitude()

Get the altitude if available, in meters above sea level.

4 float getBearing()

Get the bearing, in degrees.

5 double getLatitude()

Get the latitude, in degrees.

The Location Object

36Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No

.

Method & Description

6 double getLongitude()

Get the longitude, in degrees.

7 float getSpeed()

Get the speed if it is available, in meters/second over ground.

8 boolean hasAccuracy()

True if this location has an accuracy.

9 boolean hasAltitude()

True if this location has an altitude.

10 boolean hasBearing()

True if this location has a bearing.

The Location Object

37Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No. Method & Description

11 boolean hasSpeed()

True if this location has a speed.

12 void reset()

Clears the contents of the location.

13 void setAccuracy(float accuracy)

Set the estimated accuracy of this location, meters.

14 void setAltitude(double altitude)

Set the altitude, in meters above sea level.

15 void setBearing(float bearing)

Set the bearing, in degrees.

The Location Object

38Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No. Method & Description

16 void setLatitude(double latitude)

Set the latitude, in degrees.

17 void setLongitude(double longitude)

Set the longitude, in degrees.

18 void setSpeed(float speed)

Set the speed, in meters/second over ground.

19 String toString()

Returns a string containing a concise, human-readable description of this object.

Get the Current Location

39Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• To get the current location, create a location client which is

LocationClientobject, connect it to Location Services using connect()

method, and then call its getLastLocation() method. This method returns

the most recent location in the form of Location object that contains

latitude and longitude coordinates and other information as explained

above. To have location based functionality in your activity, you will have

to implement two interfaces −

• • GooglePlayServicesClient.ConnectionCallbacks

• • GooglePlayServicesClient.OnConnectionFailedListener

• These interfaces provide following important callback methods, which you

need to implement in your activity class −

Get the Current Location

40Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

Sr.No. Callback Methods & Description

1 abstract void onConnected(Bundle connectionHint)

This callback method is called when location service is connected to the location client

successfully. You will use connect() method to connect to the location client.

2 abstract void onDisconnected()

This callback method is called when the client is disconnected. You will use disconnect() method

to disconnect from the location client.

3 abstract void onConnectionFailed(ConnectionResult result)

This callback method is called when there was an error connecting the client to the service.

Motion sensors

41Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The Android platform provides several sensors that let you monitor the

motion of a device.

• The sensors' possible architectures vary by sensor type:

• • The gravity, linear acceleration, rotation vector, significant motion, step

counter, and step detector sensors are either hardware-based or software-

based.

• • The accelerometer and gyroscope sensors are always hardware-based.

• Most Android-powered devices have an accelerometer, and many now

include a gyroscope. The availability of the software-based sensors is more

variable because they often rely on one or more hardware sensors to derive

their data. Depending on the device, these software-based sensors can

derive their data either from the accelerometer and magnetometer or from

the gyroscope.

Motion sensors

42Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Motion sensors are useful for monitoring device movement, such as tilt,

shake, rotation, or swing. The movement is usually a reflection of direct

user input (for example, a user steering a car in a game or a user controlling

a ball in a game), but it can also be a reflection of the physical environment

in which the device is sitting (for example, moving with you while you

drive your car). In the first case, you are monitoring motion relative to the

device's frame of reference or your application's frame of reference; in the

second case you are monitoring motion relative to the world's frame of

reference. Motion sensors by themselves are not typically used to monitor

device position, but they can be used with other sensors, such as the

geomagnetic field sensor, to determine a device's position relative to the

world's frame of reference (see Position Sensors for more information).

Motion sensors

43Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• All of the motion sensors return multi-dimensional arrays of sensor

values for each SensorEvent. For example, during a single sensor

event the accelerometer returns acceleration force data for the three

coordinate axes, and the gyroscope returns rate of rotation data for

the three coordinate axes. These data values are returned in

a float array (values) along with other SensorEvent parameters.

Table 1 summarizes the motion sensors that are available on the

Android platform.

• The rotation vector sensor and the gravity sensor are the most

frequently used sensors for motion detection and monitoring. The

rotational vector sensor is particularly versatile and can be used for

a wide range of motion-related tasks, such as detecting gestures,

monitoring angular change, and monitoring relative orientation

changes. For example, the rotational vector sensor is ideal if you

https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html#values
https://developer.android.com/reference/android/hardware/SensorEvent.html

Android Open Source Project sensors

44Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• All of the motion sensors return multi-dimensional arrays of sensor

values for each SensorEvent. For example, during a single sensor

event the accelerometer returns acceleration force data for the three

coordinate axes, and the gyroscope returns rate of rotation data for

the three coordinate axes. These data values are returned in

a float array (values) along with other SensorEvent parameters.

Table 1 summarizes the motion sensors that are available on the

Android platform.

• The rotation vector sensor and the gravity sensor are the most

frequently used sensors for motion detection and monitoring. The

rotational vector sensor is particularly versatile and can be used for

a wide range of motion-related tasks, such as detecting gestures,

monitoring angular change, and monitoring relative orientation

changes. For example, the rotational vector sensor is ideal if you

https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html#values
https://developer.android.com/reference/android/hardware/SensorEvent.html

Android Open Source Project sensors

45Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Use the gravity sensor

• The gravity sensor provides a three dimensional vector indicating

the direction and magnitude of gravity. Typically, this sensor is used

to determine the device's relative orientation in space. The following

code shows you how to get an instance of the default gravity

sensor:

Use the rotation vector sensor

46Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• The rotation vector represents the orientation of the device as a

combination of an angle and an axis, in which the device has rotated

through an angle θ around an axis (x, y, or z).

• The following code shows you how to get an instance of the default

rotation vector sensor:

• The three elements of the rotation vector are expressed as follows:

•

Use the rotation vector sensor

47Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• Use the step counter sensor

• The step counter sensor provides the number of steps taken by the user

since the last reboot while the sensor was activated. The step counter has

more latency (up to 10 seconds) but more accuracy than the step detector

sensor.

• Use the step detector sensor

• The step detector sensor triggers an event each time the user takes a

step. The latency is expected to be below 2 seconds. The following

code shows you how to get an instance of the default step detector

sensor:

Use the rotation vector sensor

48Building Blocks/ Mobile Application Development/ Anand Kumar. N/IT/SNSCT

• val sensorManager = getSystemService(Context.SENSOR_SERVICE) as

SensorManager

• val sensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER)

• val sensorManager = getSystemService(Context.SENSOR_SERVICE)

as SensorManager

• val sensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR)

