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Learning Systems

Learning systems consider
* Solved cases - cases assigned to a class

Information from the solved cases - general decision rules

Rules - implemented in a model

Model - applied to new cases

Different types of models - present their results in various forms

Linear discriminant model - mathematical equation (p = ax, + bx, +
CX; +dx, + ex.).

Presentation comprehensibility
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Data Classification and Prediction

e Data classification
e classification
* prediction

* Methods of classification
e decision tree induction
* Bayesian classification
* backpropagation
* association rule mining
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Data Classification and Prediction

* Method creates model from a set of training data
* individual data records (samples, objects, tuples)
* records can each be described by its attributes
 attributes arranged in a set of classes

e supervised learning - each record is assigned a class
label
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Data Classification and Prediction

* Model form representations
* mathematical formulae
e classification rules
e decision trees

* Model utility for data classification
 degree of accuracy
* predict unknown outcomes for a new (no-test) data set

* classification - outcomes always discrete or nominal

values
* regression may contain continuous or ordered values
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Description of
Decision Rules or Trees

* Intuitive appeal for users

* Presentation Forms
* “if, then” statements (decision rules)
* graphically - decision trees
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What They Look Like

* Works like a flow chart
* Looks like an upside down tree

* Nodes
e appear as rectangles or circles
* represent test or decision

* Lines or branches - represent outcome of a test
* Circles - terminal (leaf) nodes

* Top or starting node- root node

* Internal nodes - rectangles
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284 Chapter 7 Classification and Prediction

Figure 7.2 A decision tree for the concept buys_computer, indicating whether or not a customer at
AliElectromics is likely to purchase a computer. Each internal (nonleaf) node represents

* teat on an attribute. Each leaf node represents a class (either buys_computer = yes or
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An Example

Bank - loan application

Classify application
e approved class
* denied class

Criteria - Target Class approved if 3 binary attributes have certain
value:

® (a) borrower has good credit history (credit rating in excess of some threshold)

* (b) loan amount less than some percentage of collateral value (e.g., 80% home
value)

* (c) borrower has income to make payments on loan

Possible scenarios = 32=8
 |If the parameters for splitting the nodes can be adjusted, the number of scenarios
grows exponentially.
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ow They Work

Decision rules - partition sample of data

Terminal node (leaf) indicates the class assignment
Tree partitions samples into mutually exclusive groups
One group for each terminal node

All paths
e start at the root node
* end at a leaf

Each path represents a decision rule
* joining (AND) of all the tests along that path
» separate paths that result in the same class are disjunctions (ORs)

All paths - mutually exclusive
e for any one case - only one path will be followed
» false decisions on the left branch
* true decisions on the right branch
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Disjunctive Normal Form

* Non-terminal node - model identifies an attribute
to be tested

* test splits attribute into mutually exclusive disjoint sets

* splitting continues until a node - one class (terminal
node or leaf)

* Structure - disjunctive normal form
e limits form of a rule to conjunctions (adding) of terms
e allows disjunction (or-ing) over a set of rules
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Geometry

* Disjunctive normal form

 Fits shapes of decision boundaries between classes
* Classes formed by lines parallel to axes

* Result - rectangular shaped class regions

INoucTion oF OBLIQUE Decision Trees

icure 2 The STEN QPR NS b e i T
Figure 2: The left side shows a simple 2-D domain in which two oblique hyperplanes define
the classes. The right side shows an approximation of the sort that an axis-parallel
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Binary Trees

* Characteristics

e two branches leave each non-terminal node
those two branches cover outcomes of the test
exactly one branch enters each non-root node
* there are n terminal nodes
there are n-1 non-terminal nodes
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Nonbinary Trees

* Characteristics
e two or more branches leave each non-terminal node
those branches cover outcomes of the test
exactly one branch enters each non-root node
* there are n terminal nodes
there are n-1 non-terminal nodes
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Goal

* Dual goal - Develop tree that
* is small
* classifies and predicts class with accuracy

* Small size

* a smaller tree more easily understood
* smaller tree less susceptible to overfitting

* large tree less information regarding classifying and
predicting cases
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Rule Induction

* Process of building the decision tree or ascertaining
the decision rules
* tree induction
* rule induction
* induction

* Decision tree algorithms
* induce decision trees recursively
* from the root (top) down - greedy approach
e established basic algorithms include ID3 and C4.5
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Discrete vs. Continuous Attributes

e Continuous variables attributes - problems for
decision trees
* increase computational complexity of the task
* promote prediction inaccuracy
 |lead to overfitting of data

 Convert continuous variables into discrete intervals
e “greater than or equal to” and “less than”
e optimal solution for conversion

e difficult to determine discrete intervals ideal
* sjze
* number
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Making the Split

* Models induce a tree by recursively selecting and
subdividing attributes
* random selection - noisy variables
* inefficient production of inaccurate trees

* Efficient models
* examine each variable
e determine which will improve accuracy of entire tree

* problem - this approach decides best split without
considering subsequent splits
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Evaluating the Splits

Measures of impurity or its inverse, goodness reduce impurity or
degree of randomness at each node popular measures include:

Entropy Function
- ép; log p,
j
Gini Index
1—@pﬂ
j

Twoing Rule

k
(BAT, B4/n) * (AT, 54/n) * (4 BAL DT A - R
ST D52

i=1
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Evaluating the Splits

k
MinorityL = Z L;

i=1,i¥max L;

Max Minority

k
MinorityR = Z R;

i=1,i#max R;

m of Variances
Sum of Variance Max Minority = max(MinorityL, MinorityR)

Sum Of Variances. The definition of this measure is:

ITe| I7T¢]

VarianceL = ) " (Cat(Tr;) = Y_ Cat(Ty,)/|TL|)?
=1 j=1
ITr| ITr|

VarianceR = Z (Cat(Tr,) — Z C'at(TR))/ITRD2
=1 =1

Sum of Variances = Variancel + VarianceR
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Overfitting

* Error rate in predicting the correct class for new
cases
 overfitting of test data
e very low apparent error rate
* high actual error rate
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Optimal Size

e Certain minimal size smaller tree

* higher apparent error rate
* lower actual error rate

* Goal
* identify threshold
* minimize actual error rate
e achieve greatest predictive accuracy
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Ending Tree Growth

* Grow the tree until
 additional splitting produces no significant information
gain
e statistical test - a chi-squared test
e problem - trees that are too small
e only compares one split with the next descending split
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Pruning

* Grow large tree

* reduce its size by eliminating or pruning weak branches
step by step
e continue until minimum true error rate

* Pruning Methods
* reduced-error pruning
* divides samples into test set and training set
* training set is used to produce the fully expanded tree
tree is then tested using the test set
weak branches are pruned
stop when no more improvement
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Pruning

* Resampling
* 5-fold cross-validation
* 80% cases used for training; remainder for testing

* Weakest-link or cost-complexity pruning

* trim weakest link ( produces the smallest increase in the
apparent error rate)

* method can be combined with resampling
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= Variations and Enhancements to Basfc
Decision Trees

* Multivariate or Oblique Trees
CART-LC - CART with Linear Combinations
LMDT - Linear Machine Decision Trees

SADT - Simulated Annealing of Decision Trees
OC1 - Oblique Classifier 1

An introduction to decision tree/Rajarajeswari.S/AP/AIML/SNSCT



Evaluating Decision Trees

 Method’s Appropriateness
* Data set or type

* Criteria
e accuracy - predict class label for new data
* scalability
» performs model generation and prediction functions

* large data sets
 satisfactory speed

* robustness

* perform well despite noisy or missing data
* intuitive appeal

* results easily understood

e promotes decision making
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Decision Tree Limitations

* No backtracking
* |local optimal solution not global optimal solution
* lookahead features may give us better trees

e Rectangular-shaped geometric regions

* in two-dimensional space
* regions bounded by lines parallel to the x- and y- axes

* some linear relationships not parallel to the axes
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Conclusions

= Utility
* analyze classified data
e produce
e accurate and easily understood classification rules
* with good predictive value

Improvements
* Limitations being addressed
* multivariate discrimination - oblique trees
* data mining techniques
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