~» L.
I oS

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35.
An Autonomous Institution

COURSE NAME : 231TT101 PROGRAMMING IN C AND DATA STRUCTURES
| YEAR/ Il SEMESTER
UNIT-1 INTRODUCTION TO C

Topic: C Operators and Expressions

Dr.B.Vinodhini
Assoclate Professor
Department of Computer Science and Engineering

S
~JEa

‘@ ﬁt“/
8

o~

C Operators S S

STl

n.‘
-
/

L f‘\/

Operators in C Language

C language supports a rich set of built-in operators. An operator is a symbol that tells the compiler to perform a certain

mathematical or logical manipulation. Operators are used in programs to manipulate data and variables.

Types of Operators in C

C programming language offers various types of operators having different functioning capabilities.

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment and Decrement Operators
6. Conditional Operator

7. Bitwise Operators

8. Special Operators

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S!S

Trnonls

Operators in C

Operator Type

Unary operator ——» | 4+ 4+ - - Unary operator

’

*
s e /' % Arithmetic operator

<, <=, >, >=, ==, = Relational operator

Binary operator &, | I, | Logical operator

s Bitwise operator
&, |, <<, >>, P

Assignment operator

Ternary operator * Ternary or
5 conditional operator

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators

Tryronls

Types of Operators

Description

Types of Operators

Description

Arithmetic_ operators

These are used to perform
mathematical calculations like
addition, subtraction,
multiplication, division and
modulus

Bit wise operators

These operators are used to
perform bit operations on given
two variables.

Assignment_ operators

These are used to assign
the values for the variables in C
programs.

Conditional (ternary)

operators

Conditional operators return one

value if condition is true and
returns another value is
condition is false.

Relational operators

These operators are used
to compare the value of two
variables.

Logical operators

These operators are used to
perform logical operations on the

given two variables.

Increment/decrement

operators

These operators are used to
either increase or decrease the
value of the variable by one.

Special operators

&, * sizeof() and ternary
operators.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S/S

Tryronls

Arithmetic Operators (+, -, *, /, %)

The arithmetic operators are the symbols that are used to perform basic mathematical operations like addition, subtraction, multiplication, division

and percentage modulo. The following table provides information about arithmetic operators.

Operator Meaning Example
25 Addition 10+5=15
- Subtraction 10-5=5
* Multiplication 10*5=50
/ Division 10/5=2
% Remainder of the Division 5%2=1

= The addition operator can be used with numerical data types and character data type. When it is used with numerical values, it performs

mathematical addition and when it is used with character data type values, it performs concatination (appending).

= The remainder of the division operator is used with integer data type only.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

-

C Operators S S

STl

ps
LN O g

Example:

—
~ 5 L= T ~ —.-1—n
LT L = A il L L T L Ol LS o

#include <stdio.h=
int main{)

1
inta=9b=4, c
C = a+b;
printf(”a+b = %d \n",c);
c = a-b;
printf("a-b = %d \n".c):
C = a*b;
printf(”"a*b = %d \n",cC);
c = a/b;
printf("a/b = %d \n".,c);
C = a%b;
printf("Remainder when a divided by b = %d \n".,C):
return 0;

H

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators

Trirnonls
Output
a+b = 13
a-b = 5
a*b = 36
asb = 2

FRemainder when a divided by b=1

The operators | + ,| - and | * | computes addition, subtraction, and multiphcation
respectively as yvou might have expected.

In normal calculation, | 9s4 = 2_.25 . Howewer, the cutputis| 2 | In the program.

It is because both the variables | a and b are integers. Hence, the output is also an INnteger.

The compiler neglects the term after the decimal point and shows answer| 2 instead of
2.25

The modulo operator | % | computes the remainder. When | a=9 | is divided by | b=4 , the

remainderis| 1 . The| % operator can only be used with integers.

Suppose | a = 5.0 ,|b = 2.0 |,| ¢ = 5 |and| d = 2 | Then in C programming,

£ 45 Either one of the operands is a floating-point number

a/b = 2.5
asd = 2.5
c/b = 2.5

£ F Both operands are integers
c/d = 2

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

H C Operators

Relational Operators (<, >, <=, >=, ==, |=)

a program. The following table provides information about relational operators.

Operator Meaning

< Returns TRUE if the first value is smaller than second value otherwise returns FALSE

> Returns TRUE if the first value is larger than second value otherwise returns FALSE

<= Returns TRUE if the first value is smaller than or equal to second value otherwise returns FALSE
>= Returns TRUE if the first value is larger than or equal to second value otherwise returns FALSE

== Returns TRUE if both values are equal otherwise returns FALSE

I= Returns TRUE if both values are not equal otherwise returns FALSE

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

N a..
~»
TrITIoNs

The relational operators are the symbols that are used to compare two values. That means the relational operators are used to check the relationship

between two values. Every relational operator has two results TRUE or FALSE. In simple words, the relational operators are used to define conditions in

Example
10 <5 is FALSE
10> 51is TRUE

10 <=51s FALSE

10 >=51s TRUE
10 ==51s FALSE
10!=5is TRUE

C Operators

SHTIronls

¥, 1
#include <stdio.h=
int main()

1
int a =5, b =5, c = 10;
printf({"%d == %d is %d “\n", a, b, a == b)
printf("%d == %d is %d “\n™, a. c. a == C)
printf({"%d = %d is %d \n", a, b, a > b);
printf{"%d > %d is %d “n” a, Cc, a8 = C):
printf("%d < %d is %d “\n", a, b, a < b);
printf{"%d < %d is %d “\n", a, Cc. a < C);
printf("%d !'= %d is %d “\n", a. b, a !'= b):
printf{("%d != %d is %d wn™, a. c, a != c)
printf("%d == %d is %d “\n™, a. b, a == b):
printf{("%d == %d is %d wn™, a. Cc, a == C)
printf("%d == %d is %d wn™, a. b. a == b)
printf{("%d <= %d is %d wn™, a. Cc, a == C)
return 0O;

s

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

5==515 1
5==10 15 0
5> 5150
5> 10 15 0
5<51is0
5 <10 is 1
5 1=51s 0
5 1=10 is 1
5 =5 151
5»=10 15 0
5 <=5 15 1
5 <= 10 is 1

C Operators

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

N a..
>
SHTY IS

H C Operators S S

(A%JJ Tryronls

Logical Operators (&&, | |, !)

The logical operators are the symbols that are used to combine multiple conditions into one condition. The following table provides information about

logical operators.

Operator Meaning Example
&& Logical AND - Returns TRUE if all conditions are TRUE otherwise returns FALSE 10<5&& 12> 10 s FALSE
| | Logical OR - Returns FALSE if all conditions are FALSE otherwise returns TRUE 10<5|| 12>10is TRUE
! Logical NOT - Returns TRUE if condition is FLASE and returns FALSE if it is TRUE (10<5&& 12>10)is TRUE

= Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is FALSE then complete condition becomes FALSE.

= Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE then complete condition becomes TRUE.

#include

int
1

ng of logical operators

<stdio.h>=
mainm{
int a = 5, b =5, c = 10, result:
result = (a == b) && (c = b):
printf{“(a == b) && (c = b) is %d “n"
result = (a == b) && (c =< b):

printf{”{a =

result = (a == b) || (c = b});
printf{“(a == b) || (c = b) is %d "
result = (a !'= b) || (c = b);
printf{“C(a '= b) || (c <= b) is %d W™
result = !'{a != b):;

printf{”!{a '= b) is %d “wn". result):
result = !'{a == b):

printf{"!{a == b) is %d “wWn". result):;

return 0O;

C Operators

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

b) &% (c < b) is %d “n©

result):;

result);

result);

result);

ST rionls

C Operators

Output
(a == b) &% (c = b) is 1
(a == b) &% (c = b) is 0O
(a == b)Y |]|] €c = b) is 1
fa !'= b)Y || €c = b) is 0O
I(a !'= b) is 1
I{a == b) is 0O

Explanation of logical operator program

e (a == b) && (c = 5) | evaluates to 1 because both operands (a == b) and (c = b) |is1
(true).

e | (a == b) && (c = b) evaluates to 0 because operand | (c < b) is 0 (false).

« (a ==b) |] (c =< b) |evaluates to 1 because | (a = b) |is1(true).

e (a !=b) |] (c = b) |evaluates to O because both operand | (a !'= b)) and| (c = b) areO
(false).

= !(a != b) evaluates to1 because operand (a != b) is O (false). Hence, !{a != b) is 1 (true).

= I{a == b) ewvaluates to O because (a == b) |is 1(true). Hence, | '(a == b) is O (false).

Tryronls

C Operators S S

Tryronls

Increment & Decrement Operators (++ & --)

The increment and decrement operators are called unary operators because both need only one operand. The increment operators adds one to the

existing value of the operand and the decrement operator subtracts one from the existing value of the operand. The following table provides

information about increment and decrement operators.

Operator Meaning Example
+ Increment - Adds one to existing value inta=>5;
at+;=a=6
Decrement - Subtracts one from existing value inta=>5;
a- =a=4

The increment and decrement operators are used infront of the operand (++a) or after the operand (a++). If it is used infront of the operand, we call it

as pre-increment or pre-decrement and if it is used after the operand, we call it as post-increment or post-decrement.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S S

SHTIronls

Pre-Increment or Pre-Decrement

In the case of pre-increment, the value of the variable is increased by one before the expression evaluation. In the case of pre-decrement, the value of
the variable is decreased by one before the expression evaluation. That means, when we use pre-increment or pre-decrement, first the value of the

variable is incremented or decremented by one, then the modified value is used in the expression evaluation.

Example Program

#include<stdio.h>

#include<conio.h?

void main(){

int 1 = 5,3;
j = ++1; // Pre-Increment

orintf("i = %d, § = %d",i,7):

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S: S

LLSTITITIN 1S

Output:

B ' "C\Users\User\Desktop\New folder\IncrementDecrement\bin\Debug\IncrementDecrement.exe”

1=06,]=0

Process returned @ (0x8) execution time : 0.047 s
Press any key to continue.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S S

SHTIronls

Post-Increment or Post-Decrement

In the case of post-increment, the value of the variable is increased by one after the expression evaluation. In the case of post-decrement, the value of
the variable is decreased by one after the expression evaluation. That means, when we use post-increment or post-decrement, first the expression is

evaluated with existing value, then the value of the variable is incremented or decremented by one.

Example Program

#include<stdio.h>
#include<conio.h>

void main(){

int 1 = 5,3;
j = i++; // Post-Increment

printf("i = %d, § = %d",i,9);

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S S

LLSTITITIN 1S

Process returned @ (0x0) execution time : 0.062 s

Press any key to continue.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

Operator

C Operators

Assignment Operators (=, +=, -=, *=, /=, %=)

Meaning
Assign the right-hand side value to left-hand side variable

Add both left and right-hand side values and store the result into left-hand side variable

Subtract right-hand side value from left-hand side variable value and store the result
into left-hand side variable

Multiply right-hand side value with left-hand side variable value and store the result
into left-hand side variable

Divide left-hand side variable value with right-hand side variable value and store the result
into the left-hand side variable

Divide left-hand side variable value with right-hand side variable value and store the remainder
into the left-hand side variable

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

~»

different variants along with arithmetic operators. The following table describes all the assignment operators in the C programming language.

Example
A=15

A+=10
= A=A+10

A-=B
= A=AB

A*=B
= A=A*B

A/=B
= A=A/B

A%=B
= A=A%B

L,

Tryronls

The assignment operators are used to assign right-hand side value (Rvalue) to the left-hand side variable (Lvalue). The assignment operator is used in

C Operators

STl

Example:

#include <stdio.h>

int main()

1
int a = 5, C;
C = a: f C is 5
printf{"c = %dwn", C):
C += a: - is 10
printf{"c = %dwn", C):
C -= a: - is 5
printf{"c = %dwn", C):
Cc *= a: f C is 25
printf{"c = %dwn", C):
Cc f= a: f C is 5
printf{"c = %dwn", C):
C %= a: fc =10
printf{"c = %dwn", C):
return 0;

T

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S S

STl

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators

Trarnonls
Bitwise Operators (&, |, A, ~, >>, <<)

The bitwise operators are used to perform bit-level operations in the ¢ programming language. When we use the bitwise operators, the operations are
performed based on the binary values. The following table describes all the bitwise operators in the C programming language.

Let us consider two variables Aand Bas A=25(11001) and B = 20 (10100).

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1 otherwise itis 0 A&B
= 16 (10000)

the result of Bitwise OR is 0 if all the bits are 0 otherwise it is 1 A|B
= 29 (11101)

IS the result of Bitwise XOR is 0 if all the bits are same otherwise it is 1 ANB
= 13 (01101)

~ the result of Bitwise once complement is negation of the bit (Flipping) ~A
= 6(00110)
<< the Bitwise left shift operator shifts all the bits to the left by the specified number of positions A<<2

= 100 (1100100)

>> the Bitwise right shift operator shifts all the bits to the right by the specified number of positions A==2
= 6(00110)

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Operators S S

SHTIronls

Bitwise AND operator &

The output of bitwise AND is 1if the corresponding bits of two operands is 1. If either bit of an

operand i1s 0, the result of corresponding bit i1s evaluated to 0.

Let us suppose the bitwise AND operation of two integers 12 and 25.

12
25

00001100 (In Binary)
00011001 (In Binary)

Bit Operation of 12 and 25
00001100
& 00011001

00001000 = 8 (In decimal)

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

L S~
'/\f\" ol

PN

C Operators S S

STl

Example #1: Bitwise AND

#include <stdio.h=

int main()

1
int a = 12, b = 25;
printf("Output = %d", a&b):
return 0;

¥

Output
Qutput = 8

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

@ C Operators S' S|

W TN
%{f\/f‘y

Conditional Operator (?:)

The conditional operator is also called a ternary operator because it requires three operands. This operator is used for decision making. In this
operator, first we verify a condition, then we perform one operation out of the two operations based on the condition result. If the condition is TRUE

the first option is performed, if the condition is FALSE the second option is performed. The conditional operator is used with the following syntax.

Condition ? TRUE Part : FALSE Part:

Example
A =(10<15)?100:200; = A value is 100

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

71~
AN Vi, "

H C Operators 5' S

- "-\j\) Tryronls
(

Special Operators (sizeof, pointer, comma, dot, etc.)

The following are the special operators in ¢ programming language.

sizeof operator

This operator is used to find the size of the memory (in bytes) allocated for a variable. This operator is used with the following syntax.

sizeof(variableName);
Example
sizeof(A); = the resultis 2 if Ais an integer

Pointer operator (¥*)

This operator is used to define pointer variables in ¢ programming language.

Comma operator (,)

This operator is used to separate variables while they are declaring, separate the expressions in function calls, etc.

Dot operator (.)

This operator is used to access members of structure or union.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C Expressions

What is an expression?

In any programming language, if we want to perform any calculation or to frame any condition etc, e use a set of symbols to perform the task, These
set of symbols makes an expression.

Inthe C programming language, an expression s defined as follows,

(An expression is a collection of operators and operands that represents a specific value.)

In the above definition, an operator IS a symbol that performs tasks like arthmetic operations, logical operations, and conditional operations, etc.

Operands are the valuies on which the operators perform the task. Here operand can be a direct value or variable or address of memory location.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C EXxpressions

Expression Types in C

Inthe C programming language, expressions are divided into THREE types. They are as follows...

1. Infix Expression
2. Postfix Expression

3. Prefix Expression

The above classification is based on the operator position in the expression.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C EXxpressions

Infix Expression

The expression in which the operator is used between operands is called infix expression.

The infix expression has the following general structure.

..
.

.
. o
...

Operand Operator Operand2

a+b

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C EXxpressions

Postfix Expression

The expression in which the operator is used after operands is called postfix expression.

The postfix expression has the following general structure.

..
.

.
N 4§
..

Example

Operand N Opgrandz Operator
Ny, v

22/12/2022 Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

C EXxpressions

Prefix Expression
The expression in which the operator is used before operands is called a prefix expression.

The prefix expression has the following general structure.

...
.
0

D
." -
..

Example

Operator Ogerand1 Operand?2
A\

7

717

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

What is Operator Precedence?

Operator precedence is used to determine the order of operators evaluated in an expression. In ¢ programming language every operator has

precedence (priority). When there is more than one operator in an expression the operator with higher precedence is evaluated first and the operator

With the least precedence is evaluated last.

What is Operator Associativity?

Operator associativity Is used to determine the order of operators with equal precedence evaluated in an expression. In the ¢ programming language,

when an expression contains multiple operators with equal precedence, we use associativity to determine the order of evaluation of those operators,

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

ﬁgC Operator Precedence and Associativity <

P, & o (/ufmwm 15

Let's understand the precedence by the example given below:

int value=10+4+20%10;

The value variable will contain 210 because * (multiplicative operator) is evaluated before + (additive operator).

The precedence and associativity of C operators is given below:

Category Operator Associativity
Postfix O->.++-- Left to right
Unary + -1~ +4+ - - (type)* & sizeof Right to left
Multiplicative */ % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational < <= >>= Left to right

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

-

3 ® -
/k =
W

N
N

\J ™~
) [
~Y L\
<
)
f
Q,J
) — C
. 4=)

.:ré

Category

Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment

Comma

Operator

&

&&

=

I
+
I
I

-

* = }-’r= == <<= &= "

Operator Precedence and Assoc

Associativity

Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left

Left to right

In the above table, the operator precedence decreases from top to bottom and increases from bottom to top.

Operators and Expressions/Dr.B.Vinodhini/ASP/CSE/SNSCT

iativity

~»

«
ST TIonS

Tryronls

22/12/2022 C Operators and Expressions/ 19CST101-Programming for Problem Solving /Selvakumar N/CSE/SNSCT

