Aronhold Kennedy (or Three Centres in Line) Theorem

The Aronhold Kennedy's theorem states that if three bodies move relatively to each other, they have three instantaneous centres and lie on a straight line.

Rubbing Velocity at a Pin Joint

The links in a mechanism are mostly connected by means of pin joints. The rubbing velocity is defined as the algebraic sum between the angular velocities of the two links which are connected by pin joints, multiplied by the radius of the pin.
Consider two links $O A$ and $O B$ connected by a pin joint at O as shown in Fig.3. Let $\omega_{1}=$ Angular velocity of the link $O A$ or the angular velocity of the point A with respect to O. $\omega_{2}=$ Angular velocity of the link $O B$ or the angular velocity of the point B with respect to O, and $r=$ Radius of the pin.
According to the definition,

Fig. 3. Links connected by pin joints

Rubbing velocity at the pin joint O
$=\left(\omega_{1}-\omega_{2}\right) r$, if the links move in the same direction
$=\left(\omega_{1}+\omega_{2}\right) r$, if the links move in the opposite direction

Velocity and Acceleration of a Point on a Link by Relative Velocity Method

Problem 1. The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long. Determine: 1. Linear velocity and acceleration of the midpoint of the connecting rod, and 2. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.

Solution. Given : $N_{\mathrm{BO}}=300 \mathrm{r} . \mathrm{p} . \mathrm{m}$. or $\omega_{\mathrm{BO}}=2 \pi \times 300 / 60=31.42 \mathrm{rad} / \mathrm{s} ; O B=$ $150 \mathrm{~mm}=0.15 \mathrm{~m} ; B A=600 \mathrm{~mm}=0.6 \mathrm{~m}$
We know that linear velocity of B with respect to O or velocity of B, $v_{\mathrm{BO}}=v_{\mathrm{B}}=\omega_{\mathrm{BO}} \times O B=31.42 \times 0.15=4.713 \mathrm{~m} / \mathrm{s}$

1. Linear velocity of the midpoint of the connecting rod

First of all draw the space diagram, to some suitable scale; as shown in Fig. Now the velocity diagram, as shown in Fig., is drawn as discussed below:

1. Draw vector $o b$ perpendicular to $B O$, to some suitable scale, to represent the velocity of B with respect to O or simply velocity of B i.e. v_{BO} or v_{B}, such that vector $o b=v_{B O}=\nu_{B}=4.713 \mathrm{~m} / \mathrm{s}$
2. From point b, draw vector $b a$ perpendicular to $B A$ to represent the velocity of A with respect to B i.e. v_{AB}, and from point o draw vector $o a$ parallel to the motion of A (which is along $A O$) to represent the velocity of A i.e. v_{A}. The vectors $b a$ and $o a$ intersect a
By measurement, we find that velocity of A with respect to B,

$$
\begin{aligned}
v_{\mathrm{AB}} & =\text { vector } b a=3.4 \mathrm{~m} / \mathrm{s} \\
\text { Velocity of } A, v_{\mathrm{A}} & =\text { vector } o a
\end{aligned}=4 \mathrm{~m} / \mathrm{s}
$$

3. In order to find the velocity of the midpoint D of the connecting $\operatorname{rod} A B$, divide the vector $b a$ at d in the same ratio as D divides $A B$, in the space diagram. In other words, $b d / b a=B D / B A$
Note: Since D is the midpoint of $A B$, therefore d is also midpoint of vector $b a$.
4. Join od. Now the vector od represents the velocity of the midpoint D of the connecting rod i.e. $v_{\text {D }}$.
By measurement, we find that $v_{\mathrm{D}}=$ vector $o d=4.1 \mathrm{~m} / \mathrm{s}$ Ans.

Acceleration of the midpoint of the connecting rod

We know that the radial component of the acceleration of B with respect to O or the acceleration of B,

$$
a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=\frac{v_{\mathrm{BO}}^{2}}{O B}=\frac{(4.713)^{2}}{0.15}=148.1 \mathrm{~m} / \mathrm{s}^{2}
$$

and the radial component of the acceleraiton of A with respect to B,

$$
a_{\mathrm{AB}}^{r}=\frac{v_{\mathrm{AB}}^{2}}{B A}=\frac{(3.4)^{2}}{0.6}=19.3 \mathrm{~m} / \mathrm{s}^{2}
$$

Now the acceleration diagram, as shown in Fig. is drawn as discussed below:

1. Draw vector $o^{\prime} b^{\prime}$ parallel to $B O$, to some suitable scale, to represent the radial component of the acceleration of B with respect to O or simply acceleration of B i.e. $a^{r}{ }_{\mathrm{Bo}}$ or a_{B}, such that

$$
\text { vector } o^{\prime} b^{\prime}=a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=148.1 \mathrm{~m} / \mathrm{s}^{2}
$$

Note: Since the crank $O B$ rotates at a constant speed, therefore there will be no tangential component of the acceleration of B with respect to O.
2. The acceleration of A with respect to B has the following two components:
(a) The radial component of the acceleration of A with respect to B i.e. $a^{r}{ }_{A \mathrm{~B}}$, and
(b) The tangential component of the acceleration of A with respect to B i.e. $a^{t}{ }_{A B}$. These two components are mutually perpendicular.
Therefore from point b^{\prime}, draw vector $b^{\prime} x$ parallel to $A B$ to represent $a^{r}{ }_{A B}=9.3$ $\mathrm{m} / \mathrm{s}^{2}$ and from point x draw vector $x a^{\prime}$ perpendicular to vector $b^{\prime} x$ whose magnitude is yet unknown.
3. Now from o^{\prime}, draw vector $o^{\prime} a^{\prime}$ parallel to the path of motion of A (which is along $A O$) to represent the acceleration of A i.e. a_{A}. The vectors $x a^{\prime}$ and $o^{\prime} a^{\prime}$ intersect at a^{\prime}. Join $a^{\prime} b^{\prime}$.
4. In order to find the acceleration of the midpoint D of the connecting $\operatorname{rod} A B$, divide the vector $a^{\prime} b^{\prime}$ at d^{\prime} in the same ratio as D divides $A B$. In other words $b^{\prime} d^{\prime} / b^{\prime} a^{\prime}=B D / B A$
5. Join $o^{\prime} d^{\prime}$. The vector $o^{\prime} d^{\prime}$ represents the acceleration of midpoint D of the connecting rod i.e. a_{D}.
By measurement, we find that
$a_{\mathrm{D}}=$ vector $o^{\prime} d^{\prime}=117 \mathrm{~m} / \mathrm{s}^{2}$ Ans.

2. Angular velocity of the connecting rod

We know that angular velocity of the connecting $\operatorname{rod} A B$,

$$
\omega_{\mathrm{AB}}=\frac{v_{\mathrm{AB}}}{B A}=\frac{3.4}{0.6}=5.67 \mathrm{rad} / \mathrm{s}^{2}(\text { Anticlockwise about } B) \text { Ans. }
$$

Angular acceleration of the connecting rod

From the acceleration diagram, we find that

$$
a_{\mathrm{AB}}^{t}=103 \mathrm{~m} / \mathrm{s}^{2}
$$

We know that angular acceleration of the connecting $\operatorname{rod} A B$,

$$
\alpha_{\mathrm{AB}}=\frac{a_{\mathrm{AB}}^{t}}{B A}=\frac{103}{0.6}=171.67 \mathrm{rad} / \mathrm{s}^{2}(\text { Clockwise about } B) \text { Ans. }
$$

Problem 2. PQRS is a four bar chain with link PS fixed. The lengths of the links are $P Q=62.5 \mathrm{~mm} ; Q R=175 \mathrm{~mm} ; R S=112.5 \mathrm{~mm} ;$ and $P S=200 \mathrm{~mm}$. The crank $P Q$ rotates at $10 \mathrm{rad} / \mathrm{s}$ clockwise. Draw the velocity and acceleration diagram when angle $Q P S=60^{\circ}$ and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of links $Q R$ and $R S$.

Solution. Given: $\omega_{\mathrm{QP}}=10 \mathrm{rad} / \mathrm{s} ; P Q=62.5 \mathrm{~mm}=0.0625 \mathrm{~m} ; Q R=175 \mathrm{~mm}=$ $0.175 \mathrm{~m} ; R S=112.5 \mathrm{~mm}=0.1125 \mathrm{~m} ; P S=200 \mathrm{~mm}=0.2 \mathrm{~m}$

We know that velocity of Q with respect to P or velocity of Q, $v_{\mathrm{QP}}=v_{\mathrm{Q}}=\omega_{\mathrm{QP}} \times P Q=10 \times 0.0625=0.625 \mathrm{~m} / \mathrm{s}$

(a) Space diagram.

(b) Velocity diagram.

(c) Acceleration diagram.

Angular velocity of links QR and RS

$$
\begin{aligned}
& \text { vector } p q=v_{\mathrm{QP}}=v_{\mathrm{Q}}=0.625 \mathrm{~m} / \mathrm{s} \\
& v_{\mathrm{RQ}}=\text { vector } q r=0.333 \mathrm{~m} / \mathrm{s} \text {, and } v_{\mathrm{RS}}=v_{\mathrm{R}}=\text { vector } s r=0.426 \mathrm{~m} / \mathrm{s} \\
& \omega_{\mathrm{QR}}=\frac{v_{\mathrm{RQ}}}{R Q}=\frac{0.333}{0.175}=1.9 \mathrm{rad} / \mathrm{s} \text { (Anticlockwise) Ans. } \\
& \omega_{\mathrm{RS}}=\frac{v_{\mathrm{RS}}}{S R}=\frac{0.426}{0.1125}=3.78 \mathrm{rad} / \mathrm{s}(\text { Clockwise). Ans. } \\
& a_{\mathrm{QP}}^{r}=a_{\mathrm{QP}}=a_{\mathrm{Q}}=\frac{v_{\mathrm{QP}}^{2}}{P Q}=\frac{(0.625)^{2}}{0.0625}=6.25 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Angular acceleration of links QR and RS

$$
\begin{aligned}
& a_{\mathrm{QP}}^{r}=a_{\mathrm{QP}}=a_{\mathrm{Q}}=\frac{v_{\mathrm{QP}}^{2}}{P Q}=\frac{(0.625)^{2}}{0.0625}=6.25 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\mathrm{RQ}}^{r}=\frac{v_{\mathrm{RQ}}^{2}}{Q R}=\frac{(0.333)^{2}}{0.175}=0.634 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\mathrm{RS}}^{r}=a_{\mathrm{RS}}=a_{\mathrm{R}}=\frac{v_{\mathrm{RS}}^{2}}{S R}=\frac{(0.426)^{2}}{0.1125}=1.613 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\mathrm{RQ}}^{t}=\text { vector } x r^{\prime}=4.1 \mathrm{~m} / \mathrm{s}^{2} \text { and } a_{\mathrm{RS}}^{t}=\text { vector } y r^{\prime}=5.3 \mathrm{~m} / \mathrm{s}^{2} \\
& \alpha_{\mathrm{QR}}=\frac{a_{\mathrm{RQ}}^{t}}{\mathrm{QR}}=\frac{4.1}{0.175}=23.43 \mathrm{rad} / \mathrm{s}^{2} \text { (Anticlockwise) Ans. } \\
& \alpha_{\mathrm{RS}}=\frac{a_{\mathrm{RS}}^{t}}{S R}=\frac{5.3}{0.1125}=47.1 \mathrm{rad} / \mathrm{s}^{2} \text { (Anticlockwise) Ans. }
\end{aligned}
$$

Problem 3. In the mechanism, as shown in Fig., the crank OA rotates at 20 r.p.m. anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links are $O A=300 \mathrm{~mm} ; A B=1200 \mathrm{~mm} ; B C=450$ mm and $C D=450 \mathrm{~mm}$. For the given configuration, determine: 1. velocities of sliding at B and D, 2. Angular velocity of $C D$, 3. linear acceleration of D, and 4. angular acceleration of $C D$.

Solution. Given : $N_{\mathrm{AO}}=20$ r.p.m. or $\omega_{\mathrm{AO}}=2 \pi \times 20 / 60=2.1 \mathrm{rad} / \mathrm{s} ; O A=300$ $\mathrm{mm}=0.3 \mathrm{~m} ; A B=1200 \mathrm{~mm}=1.2 \mathrm{~m} ; B C=C D=450 \mathrm{~mm}=0.45 \mathrm{~m}$

(a) Space diagram.

(b) Velocity diagram.

(c) Acceleration diagram.

$$
\begin{aligned}
& v_{\mathrm{B}}=\text { vector } o b=0.4 \mathrm{~m} / \mathrm{s} \text { Ans. } \\
& v_{\mathrm{D}}=\text { vector } o d=0.24 \mathrm{~m} / \mathrm{s} \text { Ans. } \\
& \omega_{\mathrm{CD}}=\frac{v_{\mathrm{DC}}}{C D}=\frac{0.37}{0.45}=0.82 \mathrm{rad} / \mathrm{s} \text { (Anticlockwise). Ans. } \\
& a_{\mathrm{D}}=\text { vector } o^{\prime} d^{\prime}=0.16 \mathrm{~m} / \mathrm{s}^{2} \quad \text { Ans. } \\
& \alpha_{\mathrm{CD}}=\frac{a_{\mathrm{DC}}^{t}}{C D}=\frac{1.28}{0.45}=2.84 \mathrm{rad} / \mathrm{s}^{2} \text { (Clockwise) Ans. }
\end{aligned}
$$

Problem 4. In the toggle mechanism shown in Fig., the slider D is constrained to move on a horizontal path. The crank OA is rotating in the counter-clockwise direction at a speed of $180 \mathrm{r} . \mathrm{p} . \mathrm{m}$. increasing at the rate of $50 \mathrm{rad} / \mathrm{s}^{2}$. The dimensions of the various links are as follows:
$O A=180 \mathrm{~mm} ; C B=240 \mathrm{~mm} ; A B=360 \mathrm{~mm} ;$ and $B D=540 \mathrm{~mm}$.
For the given configuration, find 1. Velocity of slider D and angular velocity of $B D$, and 2. Acceleration of slider D and angular acceleration of $B D$.

(a) Space diagram.

(b) Velocity diagram.

(c) Acceleration diagram.

