

19MET204- STRENGTH OF MATERIALS

UNIT I - STRESS STRAIN DEFORMATION OF SOLIDS

<u>Rigid and Deformable bodies-Strength,</u>
<u>stiffness and stabilRigid bodies and deformable solids – Tension,</u>
<u>Compression and Shear Stresses ty</u>

Strength of Materials

Stress and Strain

Strength of materials, also called mechanics of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains.

SIS

STRESS

Stress is defined as the resistance force acing per unit cross section area of the component

Stress,
$$\sigma = \frac{Force}{Cross-Sectional Area} = \frac{F}{A_0}$$

SNS COLLEGE OF TECHNOLOGY STRAIN

Strain is the response of a system to an applied stress. When a material is loaded with a force, it produces a stress, which then causes a material to deform.

DEFORMATION

In materials science, deformation refers to any changes in the shape or size of an object due to an applied force or a change in temperature

SNS COLLEGE OF TECHNOLOGY Types of Loads

In the mechanics of the deformable bodies, the following types of loads are commonly considered:

- Dead loads—static in nature, such as the self-weight of the roof.
- Live loads—fluctuating in nature, do not remain constant- such as a weight of a vehicle moving on a bridge.
- Tensile loads.
- Compressive loads.
- Shearing loads.