SNS COLLEGE OF TECHNOLOGY

16ME207- STRENGTH OF MATERIALS

UNIT- IV DEFLECTION OF BEAMS AND BUCKLING OF COLUMNS

Equivalent length of a column - Problems

SNS COLLEGE OF TECHNOLOGY
Equivalent length of a column
TABLE: 1

SNS COLLEGE OF TECHNOLOGY Equivalent length of a column - Problems

A slender pin ended aluminum column 1.8 m long and of circular cross-section is to have an outside diameter of 50 mm . Calculate the necessary internal diameter to prevent failure by buckling if the actual load applied is $\mathbf{1 3 . 6} \mathbf{k N}$ and the critical load applied is twice the actual load. Take E for aluminum as 70 GN/m2.

Solution:-
Outside diameter of the column,

$$
D=50 \mathrm{~mm}=0.05 \mathrm{~m}
$$

Inside diameter of the Column, d.
Aves of the Column,

$$
A=\frac{\pi}{4}\left(D^{2}-d^{2}\right)=\frac{\pi}{4}\left(0.05^{2}-d^{2}\right)
$$

Moment of Inertia of the Column,

$$
I=\frac{\pi}{64}\left(D^{4}-d^{4}\right)=\frac{\pi}{64}\left(0.05^{4}-c^{2}\right)
$$

Also, critical load $=2 \times$ sate load (Given).

$$
=2 \times 13.6=27.2 \mathrm{kN} .
$$

End Conditions:- Pinended.

$$
C_{e}=6=1.8 \mathrm{~m} .
$$

using the relation, $P_{\text {Euler }}=\frac{\pi^{2} E I}{C_{e}^{2}}, W_{2} g_{2} t$.

$$
27.2 \times 10^{3}=\frac{\pi^{2} \times 70 \times 10^{9} \times \frac{\pi}{64}\left(0.05^{4}-d^{4}\right)}{1.8^{2}}
$$

$$
\left(0.05^{4}-d^{4}\right)=\frac{27.2 \times 10^{3} \times 1.8^{2} \times 64}{\pi^{2} \times 70 \times 10^{9} \times \pi}=2.6 \times 10^{-6}
$$

$$
d^{4}=6.25 \times 10^{-6}-2.6 \times 10^{-6}=3.65 \times 10^{-6}
$$

$$
d=0.0437 \mathrm{~m}=42.7 \mathrm{~mm}
$$

Inside diameter, $d=43.7 \mathrm{~mm}$

SNS COLLEGE OF TECHNOLOGY Equivalent length of a column - Problems
A bar of length $4 m$ when used as a simply supported beam and subjected to a u.d.l. of $30 \mathrm{kN} / \mathrm{m}$ over the whole span, deflects 15 mm at the centre. Determine the crippling loads when it is used as a column with following end conditions:a) Both ends pin-jointed;b) One end fixed and other end hinged;c) Both ends fixed.

Solution:-
Given Data:-
Length of the bar $1=4 \mathrm{M}$
uniformly distributed load, $W=30 \mathrm{kN} / \mathrm{m}$.
Deflection, $\delta=15 \mathrm{~mm}=0.015 \mathrm{~m}$.
We know that, $\delta=\frac{5 W 14}{384 E I}$

$$
\begin{align*}
& 0.015=\frac{5 \times\left(30 \times 10^{3}\right) \times 4^{4}}{384 E I} \\
& E I=\frac{5 \times\left(30 \times 10^{3}\right) \times 4^{4}}{0.015 \times 384}=6.66 \times 10^{6} \mathrm{Nm}^{2}
\end{align*}
$$

i)

$$
\begin{aligned}
P_{\text {Euler }} & =\frac{\pi^{2} E I}{C_{e}{ }^{2}} \quad\left(l_{e}=(=4 \mathrm{~m}) .\right. \\
& =\frac{\pi^{2} \times 6.66 \times 10^{6}}{4^{2}}=4108 \mathrm{kN}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
P_{E_{\text {ruler }}} & =\frac{\pi^{2} E I}{4_{e}^{2}} \quad\left[l_{e}^{2}=\frac{1}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2.83 \mathrm{~m}\right] \\
& =\frac{\pi^{2} E I}{2.83^{2}}=\frac{\pi^{2} \times 6.66 \times 10^{6}}{2.83^{2}}=8207 \mathrm{kN} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
P_{\text {Euler }} & =\frac{\pi^{2} E I}{6_{e}{ }^{2}}\left[l=\frac{1}{2}=\frac{4}{2}=2 \mathrm{~m}\right] \\
& =\frac{\pi^{2} E I}{2^{2}}=\frac{\pi^{2} \times 6.66 \times 10^{6}}{2^{2}}=16432 \mathrm{kN} .
\end{aligned}
$$

