

16ME207- STRENGTH OF MATERIALS

UNIT II - TORSION AND SPRINGS

Shear stress distribution

Power transmitted by a shaft

The main purpose of a shaft is to transmit its power to another member. Let a rotating shaft transmitting power from one of its ends to another be considered. Let N be the revolutions per minute (rpm), T be the average torque $N \cdot m$ and ω be the angular speed of the shaft.

Work done per minute = (Force) × (Distance)

= (Average torque) × (Angular displacement)

 $= T \times 2\pi N/60$

Torsional Rigidity

Torsional rigidity is the resistance of the shaft to this shearing stress. The torsional equation is expressed as:

Dr.T.PRAKASH / PROFESSOR / MECH / SOM

SNS COLLEGE OF TECHNOLOGY

Problem

1. In a tensile test a test piece of 25 mm diameter, 200mm gauge length, stretched 0.0975 mm under a pull of 50 kN. In a torsion test, the same rod twisted 0.025 radian over a length of 200 mm when a torque of 0.4kNm was applied. Evaluate Poisson's ratio and the three elastic moduli for the material.

Solution-Modulus of Rigidity. Young's Modulus C= Modulus of visidity for the test piece. E = Young's Modulus for the test Piace. Ip = Polar moment of Inertia of a solid $\mathcal{B}(=\frac{W(}{AE}, Where A=\frac{\pi}{4} \times \left[\frac{25}{1000}\right]^2 m^2$ Circular Shatt. $=\frac{T}{32} \times D^{4} = \frac{T}{32} \times \left[\frac{25}{1000}\right]^{4} = 3.835 \times 10^{-8} \text{ M}^{4}.$ A \$ = 4.91 × 10-4 m2. Using the following relation, we have. 0.0975×10-3= 50×103×0.2 $\frac{T}{I_{p}} = \frac{C\theta}{L}$ $C = \frac{T(}{I_{p}\theta} = \frac{(0.4 \times 10^{3}) \times 0.2}{3.895 \times 10^{-8} \times 0.02.5} \times 10^{-9} \text{ GN/m}^{-1}.$ $E = \frac{50 \times 10^3 \times 0.2}{(0.0975 \times 10^{-9}) \times 4.91 \times 10^{-9}} \times 10^{-9} \text{ GN/m}^2$ E= 208GN/m2

SNS COLLEGE OF TECHNOLOGY

Problem

C= 83.44 GN/m2	Bulk modulus :-
Poisson's vatio for the test piece	K. Bulk modulus for the test piece
Using the following relation. $C = \frac{mE}{mE}$	$k_{=} \frac{mE}{3(m-1)} = \frac{\frac{1}{0.246} \times 208 \times 10^{9}}{3 \left(\frac{1}{0.246} \times 10^{10} \times 10^{10} \text{ G N/m^2}\right)} \times 10^{-9} \text{ G N/m^2}.$
$2(m+1).$ 83.44×10 ⁹ = $\frac{M \times 208 \times 10^{9}}{2(m+1)}.$	K = 136.4 GN/m2.
$y_m = 0.246$. $y_m = 0.246$	

2. A solid circular shaft transmits 75 kW power at 200 r.p.m. Calculate the shaft diameter, if the twist in the shaft is not to exceed 10 in 2 meters length of shaft, and shear stress is limited to 50 MN/m2. Take C = 100 GN/m2.

30 lution :-	First case : Allowable Shear Stress (50 MN/m2), D:
Given - P= 75 KW; N= 200 m.	Using the velation, T= ZX TK XD3
0= 1 = 1x 1/180 " a dian, 1 = 200 Z= 50 MN/m2; C= 100 GN/m2.	3581 = 50×10 × 7 × D3
Using the relation: P. 27 NT .: 75. 27× 200 xT	$D^{3} = \frac{3581 \times 16}{50 \times 10^{6} \times T}$
60× 1000 60 × 1000	D= 0.0714m (ov) 71.4mm
T= 75×60×1000 .3581 Nm. 2×× 200	D=0.0714m (or) 71.4 mm
T= 3581 Nm.	

SNS COLLEGE OF TECHNOLOGY

Problem

Becond Case : Angle of twist (1°), D
Using the velation.
TCO
Ip
3581 100×109 × 1× ×/180
$\frac{1}{1} \times D^{4}$ 2
D4= 3581×2×180×32
$\pi \times \pi \times 100 \times 10^9$
D=0.0804m (ov) 80.4 mm.
D=0.0804m(0r)80.4mm
The above two cases we

From the above two cases we find that suitable diameter for the shaft is 80.4mm or) say 80mm (i.e. greater of the two values)